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Abstract. Fine-Grained classification models can expressly focus on the rele-
vant details useful to distinguish highly similar classes typically when the intra-
class variance is high and the inter-class variance is low given a dataset. Most of
these models use part annotations as bounding box, location part, text attributes
to enhance the performance of classification and other models use sophisticated
techniques to extract an attention map automatically. We assume that part-based
approaches as the automatic cropping method suffers from a missing representa-
tion of local features, which are fundamental to distinguish similar objects. While
Fine-Grained classification endeavours to recognize the leaf of a graph, humans
recognize an object trying also to make a semantic association. In this paper,
we use the semantic association structured as a hierarchy (taxonomy) as super-
vised signals and used them in an end-to-end deep neural network model termed
as EnGraf-Net. Extensive experiments on three well-known datasets: Cifar-100,
CUB-200-2011 and FGVC-Aircraft prove the superiority of EnGraf-Net over
many Fine-Grained models and it is competitive with the most recent best models
without using any cropping technique or manual annotations.
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1 Introduction

In Neuroscience, pattern separation is a process defined as the capability to discrimi-
nate a set of similar patterns into less-similar sets of outputs patterns. In [28], the authors
show the evidence of the capability of the pattern separation in the Dentate Gyrus (DG)
neurons and the pattern completion (a complementary process of pattern separation) in
the CA3 neurons. DG and CA3 area of the hippocampus have been long hypothesized
to be responsible for these processes and [28, 7, 27] provides strong empirical support
for this functional dissociation. In [29], entitled CA3 Sees the Big Picture while Dentate
Gyrus Splits Hairs, the authors support the same idea and provide furthermore result to
this conclusion. Again, in [25], theoretical models suggest the DG performs pattern sep-
aration of cortical inputs before sending its differentiated outputs to CA3. Indeed, DG is
ideally located to do this, receiving signals via the major projection from the entorhinal
cortex (EC), the perforant path (PP), and sending signals to CA3. These results provide
vigorous support for long-standing hypotheses attributing each hippocampal sub-region
with distinct roles in neural information processing and set the stage for exciting new
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research [25]. The deep learning models separate the main signal (e.g. images, sounds,
text) in small signals using convolutional operation useful to improve the discrimination
ability in the pattern recognition task. Recently, some works are considering forcing the
pattern separation process using the semantic association (e.g. hierarchical structure)
that comes from the hierarchy abstraction or by manual/automatic text annotation ex-
tracted for each image to achieve better performance of a deep learning model. Many
of them apply sophisticated methods to extract specific crops on images in order to
get more high discriminative features [38, 43, 13, 42, 36] instead to consider all manual
annotations from a dataset to get them. In Computer Vision (e.g. Fine-Grained clas-
sification) implies a hierarchy organization structure composed by different levels of
abstraction and it can be represented by a graph, in which all nodes closer to the root
represents the abstract concept and as deep as we go far from the node root we find finer-
grained abstraction. Also, humans use hierarchical information to recognize a specific
object when it is unknown, therefore the categories hierarchy provides a rich semantic
correlation among different categories across many levels of abstraction. In the learn-
ing process, this guidance can have a regulating effect on semantic space and can lead
an algorithm to get better discriminative features for the fine-grained recognition task.
In [4], the authors designed a model which considers different granularity levels and
proves the usefulness to consider this information to enhance the capability of the main
model. Again, in [17], the authors use hierarchical annotation taken by Word-Net to
build an end-to-end model to focus on final classification jointly with the hierarchical
classification task. They use a simple multi-layer perceptron considering 3 levels of ab-
straction demonstrating the capability of a model to solve both recognition tasks. The
idea to feature fusion considering a multi-scale model was introduced in [20]. Recent
works as [21, 12] brings to light new interesting architecture to feature fusion at dif-
ferent levels of a deep model. These approaches use the lateral connections of a deep
model to carry out fusion operations and combine them widely. In our approach, we
use the semantic association as a hierarchical supervised signal to improve the ability
of pattern recognition. In Fine-Grained classification, the focus of the most recent deep
models is to generate an attention map that contains high discriminative feature such
that they can outperform the results in the classification. However, the spatial informa-
tion (e.g. all regions that contain the environment of the object itself) can also contain
useful features to help the pattern recognition ability by models. In [24], observations
of five species of Warbler proves that species divide up the resources of a community in
such a way that each species is limited by a different factor, such for example the tree
partition. Authors show the tree partitioning where at a certain percentage it is possible
to find a species in a specific location of the trees. The environment (spatial information)
in which the objects can be found is very important and must be considered by mod-
ern deep learning models. In our proposal, we do not avoid spatial information using
cropping technique, but we consider all information without using any specific region
location. In this paper, leveraging by the action makes by DG in our brain we simulate
the pattern separation ability of DG neurons using a supervised approach through the
semantic association extracted from the hierarchical information of the datasets. We
force the pattern separation in a deep model in order to get discriminative features use-
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ful to recognize the hierarchy of the objects and distinguish very similar objects. The
scientific contribution of this work is concluded as follows:

1. We introduce a Multiple Granularity Branch Network with Fine-Coarse graft grained
for Fine-Grained classification task. Our model termed as EnGraf-Net, uses the hi-
erarchical semantic associations from the datasets to force the pattern separation
and improve the discrimination capability of a deep learning model.

2. We conduct experiments on Cifar-100, CUB200-2011 and FGVC-Aircraft datasets
and demonstrating the effectiveness of our proposal over the baselines and proves
to compete with the most recent algorithms compared. We investigating also in
the contribution of each components using the Resnet family models conducting
ablative studies. We released the code and all experimental reports at [16].

1.1 Related work

NTS-Net [38] introduces a self-supervised mechanism to locate informative regions
without using the bounding box and part annotations. Many works as [37, 33, 15, 11],
take advantage of fine-grained human annotations, like the location of some details
of images. However, human annotations are expensive and far away from the deep
learning concept where every single concept has to be automatic. NTS-Net [38] uses
a mechanism to localize informative regions automatically (Navigator) and a Teacher
module that evaluates the probability to belong to the ground-truth class using these
regions extracted by the Navigator module. Finally, a Scrutinizer module uses these
regions to make fine-grained classifications. The model takes the top-M informative
regions with the highest score got and these last can represent a weakness of NTS-Net
because of the fixed number of regions taken. In [14], authors developed a localization
module integrated into an end-to-end setup that generates an attention map and then
is used to predict the bounding box of the discriminative regions. The main model is
composed of three main modules. The first two modules termed as AttNet and AffNet has
the goal to perform the localization using a combined max-pooling method that merges
the vertical/horizontal transformation. Finally, the last model represents the baseline
useful to the make classification. In [13], similar to Affnet, a method was proposed
to search relevant images regions introducing a module trained to build an attention
map and a Global K-Max pooling function useful to find a single feature vector that
describes the image. The final model requires multiple separate training runs instead to
have an end-to-end model. In [43], authors proposed an attentive pairwise interaction
network for Fine-grained classification based on the idea that humans often compare
pairs of images jointly to recognize subtle differences between similar objects. Their
method uses two paired images as input and cross-entropy (CE) loss function with a
score ranking regularization. In this paper, we compare us with the most recent models
who obtain excellent performance in Fine-Grained classification task and we conduct
extensive ablation studies analyzing the performance of our proposal.

2 Methodology

The hippocampus and related structures have the capability to minimizes the sets over-
lap between similar patterns (pattern separation) and to reconstruct complete stored rep-
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(a) (b)

Fig. 1: a) Schematic diagram of our EnGraf-Net b) Schematic diagram of the regions
of the hippocampus. The figure shows the feedforward pathway from the entorhinal
cortex to the DG and the CA3 neurons. The EC, DG and CA3 blocks are very similar
to ours blocks. We simulate the process of the pattern separation by DG and the others
connection (EC, DG, CA3) with our proposed approach.

resentations from partial patterns that are part of the stored representation (pattern com-
pletion). In Fig. 1(b) we show the main pathway diagram of the hippocampus regions
and the structure similarity than our proposed approach (see Fig. 1(a)). Observing the
nature of this process, we try to simulate the pattern separation/completion as a module
engrafted into a branch of a convolutional neural network and analyze the performance
model in Fine-Grained classification task. We force a branch through a graft to obtain
two supervised patterns that come from the truth of the fine labels and the coarse labels
(pattern separation) and finally, we concatenate these patterns into one going towards
the next steps of EnGraft-Net (pattern completion). Instead to use manual/automatic
annotation comes from images as supervised truth, we extract the semantic association
that comes from the hierarchy of the entire datasets used. A semantic association is a
process that quantifies the strength of the semantic connection between textual units,
taking into account different kinds of relationships and it is an indispensable section of
various applications having a spot with a huge number of fields, for instance, Cogni-
tive Psychology and Computer Science. When a semantic association is organized as
hierarchical structure, it is called Taxonomy. We use the Taxonomy of datasets and use
the semantic association (class, superclass) as supervised signals useful to compute the
loss functions used and we use a combination of different patterns comes from different
branches to enhance the discriminative power and increase the main performance of
the model. More precisely, given yK be the fine-grained label from a dataset, we build
upon yK label the superclasses label yK−1. Each image x is annotated using different
granularity yK−1, yK and CK−1, CK is the number of the class categories considered.
Our goal is to correct classify images x across two different types of granularity using
an end-to-end model and CE loss functions.

2.1 Network architecture

EnGraf-Net is based on Resnet family networks. We use a multi-branch approach (see
Fig. 1) where the first two branches have the goal to find discriminative features using
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Fig. 2: An overview of our proposed EnGraf-Net model. It employs two branches to
extract features at different grain and a third branch network where we engraft a sub-
network useful to apply the pattern separation process.

two types of supervised signals: all labeled classes of fine grained and all labeled super-
class of coarse grained extracted by the semantic annotation of a the dataset. The third
branch is responsible to make the pattern separation/completion through both super-
vised signals (fine/coarse grained labels). We can choose different type of grafting. The
graft block is composed by a convolutional layer, batch normalization and relu activa-
tion function. Then, we use an adaptive max pooling with output 1× 1 and finally after
a flatten operation of the output we have a fully connected layer, where yK−1 represents
the hierarchy class labels used. We concatenate all signals from different branches and
use fully connect layers where the last loss function is applied. Depending on which
model of Resnet we select the total numbers of parameters of EnGraf-Net is increased.

2.2 Loss functions

In the training process we use CE as loss function in the form:

Lxent = −
1

m

m∑
i=1

log
eW

T
yi

xi+byi∑n
j=1 e

WT
j xi+bj

, (1)

where Wyi is the weight associated to class y of i-th instance, xi are the deep feature of
i-th instance and b is the bias term to class y of i-th instance.
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Table 1: Experimental results

(a) CUB-200-2011

Method Top-1

Prior Work
Resnet-50 84.5
PN-DCN [1](BMVA 14) 85.4
DT-RAM [19](ICCV 17) 86.0
MC-Loss [3](Trans. Img Proc. 20) 87.3
MaxEnt [10](NeurIPS 18) 86.5
MA-CNN [39](ICCV 17) 86.5
KERL [6](IJCAI 18) 87.0
AP-CNN 1 st. [9](Trans. Img Proc. 21) 87.2
NTS-Net [38](ICCV 18) 87.5
DBTNet-50 [40](NeurIPS 19) 87.5
Cross-X [22](ICCV 19) 87.7
TASN [42](CVPR 19) 87.9
HSE [5](ACM-MM 18) 88.1
DBTNet-101 [40](NeurIPS 19) 88.1
CDL [36](ACM-MM 19) 88.4
AP-CNN 2 st. [9](Trans. Img Proc. 21) 88.4
Elope [13](WACV 20) 88.5
API-Net [43](AAAI 20) 88.6

Our Results
EnGraf-Net50 (G=4, H=1) 87.94
EnGraf-Net101 (G=4, H=1) 88.00
EnGraf-Net152 (G=4, H=1) 88.31

(b) FGVC-Aircraft

Method Top-1

Prior Work
Kernel-Act [2](ICCV 17) 88.3
MaxEnt [10](NeurIPS 18) 89.8
MA-CNN [39](ICCV 17) 89.9
PA-CNN [41](Trans. Img Proc. 19) 91.0
DBTNet-50 [40](NeurIPS 19) 91.2
NTS-Net [38](ICCV 18) 91.4
iSQRT-COV [18](CVPR 18) 91.4
DBTNet-101 [40](NeurIPS 19) 91.6
DFL-CNN [35](CVPR 18) 92.0
SEF [23](IEEE Sign. Proc. Lett. 20) 92.1
AP-CNN 1 st [9](Trans. Img Proc. 21) 92.2
Cross-X [22](ICCV 19) 92.7
S3Ns [8](ICCV 19) 92.8
MC-Loss [3](Trans. Img Proc. 20) 92.9
EfficientNet-B7 [31](ICML 19) 92.9
API-Net [43](AAAI 20) 93.4
Elope [13](WACV 20) 93.5
AP-CNN 2 st [9](Trans. Img Proc. 21) 94.1

Our Results
EnGraf-Net50 (G=4, H=1) 92.14
EnGraf-Net101 (G=4, H=1) 93.34

(c) Hierarchy classification

CUB AIR
Method acc coarse-fine acc coarse-fine

EnGraf-Net50 92.32-87.94 95.44-92.14
EnGraf-Net101 92.70-88.00 96.10-93.34

(d) Cifar-100

Method top-1

Resnet-18 72.43
Two-Branch 72.95
Graft 73.85
EnGraf-net18 (G=2, H=1) 75.52
EnGraf-net18 (G=3, H=1) 75.13
EnGraf-net18 (G=4, H=1) 75.85
EnGraf-net18 (G=5, H=1) 75.41

(e) Cifar-100

Method top-1 Ours top-1

Resnet-18 72.43 EnGraf-net18 75.85
Resnet-50 75.42 EnGraf-net50 77.27
Resnet-101 75.49 EnGraf-net101 77.13

Considering the network proposed (see Fig. 2) we compute multiple CE loss in a
different part of our proposal (FC0, FC1, FC2, FC3, FC4) where each of them jointly
with supervised signals is used in the learning process with Stochastic Gradient De-
scendent method to achieve the global minima (or a good approximation of it). To
summarize our total loss function, we use the following formulation:

L =Lxent(FC0, y
K) + Lxent(FC1, y

K)+ (2)

Lxent(FC2, y
K−1) + Lxent(FC3, y

K) + Lxent(FC4, y
K−1)

The cardinality of the classes y considered in EnGraf-Net is different in FC2, FC4

than FC0, FC1, FC3 due to the supervised signals selected (it depends on the datasets
and by how many hierarchy annotations we consider).
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3 Experiments

We conduct experiments on three well-known datasets: Cifar-100, CUB-200-2011 and
FGVC-Aircraft and we investigate our performance model using the Resnet family
comparing our proposal with the relative baselines and with some most recent archi-
tectures proposed in the literature (Table (1a) and Table (1b)). We conduct an abla-
tion study on Resnet-18 using different type of graft and with some variations of it
(Table (1d) and Table (1e)). We use Cifar100 dataset as a toy dataset to analyze the
behaviour of our proposal. It contains 50,000 images 32 × 32 of training and 10,000
test images, labelled over 100 fine-grained classes. We use 20 coarse-grained classes as
yK−1 semantic association in our hierarchical extraction. All other experiments have
been performed on challenging Fine-Grained image classification benchmark datasets.
CUB-200-2011 [32] contains 11788 images of 200 species of birds split in 5994 and
5794 images for train and test respectively. In addition, we use 122 class labelled as
genera of the species as supervised signals. FGVC-Aircraft [26] contains 10, 000 im-
ages of airplanes annotated with the model, specifically splitted in 6667 and 3333 for
train and test set. This dataset is organised in four-level hierarchy. In addition to 100
classes (fine-labels) we use 70 classes (family) as superclass labelled. In all our ex-
periments we use different pre-preprocessing data (see our code [16]). We report the
upper-bound computational time of 19:43h in CUB-200-2011 over 150 epochs using a
learning rate optimizer (SGD in all our experiments) of 0.001 and batch-size 20 using
an EnGraf-Net152.

3.1 Results

In Table (1a) and Table (1b) we report the comparison results between the proposed
model and other existing models on the two widely used fine-grained classification
benchmark. We measure the top-1 accuracy in each experiment demonstrating the im-
provements across both datasets used. We obtained 88.31% and 93.34% respectively on
CUB-200-2011 and FGVC-Aircraft datasets overcoming the best models used of fine-
grained task and being very competitive with the most recent algorithms designed for
this specific task (e.g API-Net). We investigated on Cifar-100 dataset analyzing the per-
formance of our proposal using different graft (Table (1d)). In this last we achieve the
best performance using a graft = 4 than the other type of graft applied in our experi-
ments and overcome the performance than the baseline Resnet-18, two-branch or using
only a branch with a simple graft. Starting to this assumption, we applied a graft = 4
for all experiment reported in Tables 1(a,b,c,e). In Table (1c) we report the accuracy
from coarse and fine classes demonstrating the capability of our model to solve both
tasks in a unique model end-to-end.

3.2 Visualization Analysis

In literature many techniques to visualize the class activation map has been proposed [30,
34]. Gradient-weighted Class Activation mapping (Grad-CAM) is widely used because
it can be applied in the pretrained models highlighting the discriminative regions of the
images. These approaches are useful to analyze the behaviour of the main model and
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(a) fine-branch (b) coarse-branch (c) graft-branch

Fig. 3: Visualization of the attentions regions captured by EnGraf-Net50 in 3 types of
layers (columns) and 3 different images (rows) of CUB. Using semantic association
of the taxonomy, our method has the capability to detect subtle differences and spa-
tial discriminative information without using part annotations. The third column show
the effectiveness to focus the attention to other regions usually not considered in fine-
grained models.

make it more transparent and understandable. In Fig. 3, we use Grad-CAM approach
to visualize the attention map build by our model applying it on three different types
of layers of our model. We emphasize that the three features obtained from these lay-
ers are combined using a concatenation function and feed into a fully connected layer
where we make the final classification. In Fig. 3, we show the activation map build by
the branch guided by the supervised signal that represents the class label (1st column),
the branch guided by the supervised signal that represents the yK−1 class (2nd column)
and at last, the branch responsible to make the graft using both supervised signals (3rd
column). The discriminative regions usually considered in a fine-grained model belong
in the object (1st column), however we force the model to find other discriminative
regions from different area of images (3rd column) as the environment information or
other useful details. It is extremely curious to observe the different highlighted regions
from the graft branch (3rd column) than the others. The exploration of new discrimi-
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native regions (spatial information) using our approach is detected and combined with
the regions from the others branch to increase the performance of the baselines without
using any annotations (e.g bounding box, location parts).

4 Conclusions

In this paper, we simulate the pattern separation/completion process follow the be-
haviour of the hippocampus brain circuit. We explore a way to fine-grained classifica-
tion using only semantic association without the requirement to use bounding-box/part
annotations or sophisticated cropping techniques. We conduct experiments along the
Resnet models demonstrating that our proposed model can easily be integrated into re-
cent convolutional neural networks. Experiments in CUB-200-2011, FGVC-Aircraft
and Cifar-100 have demonstrated the effectiveness of proposed model across many
models designed for fine-grained task overcoming the performance of them and to be
competitive with the most recent models.
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