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Abstract—In this work we introduce a pipeline to detect and
recognize various utility meter numbers in the wild. The system
leverages on deep neural networks for detection and recogni-
tion. In the detection phase, we employ a fully Convolutional
Neural Network to perform a pixel-wise classification, while
the recognition phase employs another deep neural network
to predict the length and individual digits in a meter. We
qualitatively showed that the proposed approach is robust against
severe perspective distortions, different lighting conditions and
blurred images. Furthermore, it is capable of detecting small scale
digits. Our approach is suitable for billing companies aiming to
increase efficiency, lowering the time consumed by manual checks
performed in the billing process. Finally, we release the dataset
used in this work to benchmark the task.

I. INTRODUCTION

In recent years, deep neural networks [1], [2], [3], [4], [5],
[6] have replaced traditional Optical Character Recognition
based methods for text detection and recognition. The strength
of deep neural networks lies in unifying localization, segmen-
tation and recognition steps [1], [2], [3]. Similarly, recognizing
multi-digit numbers in images is considered a more specific
task in text recognition. It is challenging due to the consider-
able variability in the visual appearance of numbers in the wild
on account of a large range of fonts, colors, styles, orientations
and arrangements. In addition, environmental factors such as
lighting, shadows, glares and occlusions further complicate
the automatic multi-digit numbers detection and recognition
tasks. Recently, recognizing multi-digit numbers in images
has gained considerable attention [1], [3], [4]. Some random
examples of multi-digit numbers are shown in Fig. 1. These
images are taken from various meter typologies such as
electricity, gas and water.

In this paper, we focus on detecting and recognizing multi-
digit numbers from various utility meter typologies. Although
this specific task reduces the set of characters to be recognized,
the complexities associated with text recognition in natural im-
ages remain. Furthermore, we observed that, in the literature,
there is no standard benchmark dataset available to evaluate
strategies on such a task. We found out that privacy is a major
concern in releasing such datasets because typically meter
images contain information related to customers. To overcome
the lack of a standard dataset, we are releasing a “cropped”
version in an attempt to benchmark such a task. We called it
“cropped” because it contains only meters numbers without
customer information.

Main contributions of this work are:
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Fig. 1: Random images extracted from the dataset. Note that

meter typologies are different, ranging from mechanical gas
meters to digital electricity meters.

« a pipeline to detect and recognize multi-digit numbers in
various meter typologies.

e a “cropped” version of the dataset, containing images
of various meter typologies to benchmark multi-digit
reading task, without customer information.

The rest of the paper is structured as follows: we explore the
related literature in Section II; details of the proposed approach
are discussed in Section III; dataset used are described in
Section IV while Section V reports settings used to perform
experiments and corresponding results. Finally conclusion are
in Section VL.

II. RELATED WORK

Text detection in natural images has been tackled in few
papers [2], [3], [7], [8]. All these attempts differ for task
addressed or models used for detection and recognition. Pre-
vious works in the literature use traditional techniques such
as Histogram of Gradient (HOG) features to perform text
detection. Minetto et al. [9] proposed T-HOG: a HOG-based
texture descriptor that uses a partition of an image to detect
a single line of text. This approach, however, suffers from
orientation issues. Given that HOG deals with lines, texts
in several orientations become a problem in this approach.
Boran et al. [8] adopted a more traditional approach, with the
joint use of HOG features and Support Vector Machine [10]
to detect Chinese words from images. Many works employ
Maximally Stable Extremal Region (MSER) to perform text
detection [11], [12].



Dai et al. [13] uses the traditional two-stage object detection
strategy that consists of region proposal extraction followed
by region classification. The problem of these approaches is
that the region proposal step has a high cardinality, forcing a
strategy that removes false positives.

With the rise of Convolutional Neural Networks (CNNs)
and their stunning results, we opt to perform the detection
and recognition using deep models. In [2] authors developed
a pipeline for text detection and recognition from the natural
scene using deep models. The purpose of our work is similar;
however, we are focusing on a more specific task: multi-digit
meter numbers detection and recognition on various meter
typologies. Next, for the recognition, we use a model similar
to the proposed by Goodfellow et al. [1]. Similarly, Gémez et
al.[3] proposed an end-to-end CNN to predict numbers in a
meter. Although the approach obtained promising results, it
suffers from severe perspective distortions. In our approach,
after the detection phase, we apply image transformations to
align it in a horizontal position, making it possible to deal with
distortions. After this step, we apply the classification model
to obtain predicted values. Moreover, our model recognizes
digits from various meter typologies, unlikely from [3], where
authors worked solely with mechanical gas meters.

III. PROPOSED APPROACH

The proposed approach is graphically represented in Fig. 2
and it is split into two phases: detection and recognition.

A. Detection phase

The detection phase is carried out with the model proposed
in [14]. This phase in labelled in Fig. 2 with name “CNN-
1”. This model takes the original image resized to 224 x 224
pixels and produces correspondingly-sized output image with
the inference. The training set contains pairs of images: the
original one and the ground truth with pixel values in {0, 1},
where 0 indicates background and 1 tags numbers. After the
inference stage, we crop the area of interest from the original
image. Furthermore, we rotate it to obtain a horizontally
aligned image. We apply the following strategy starting from
the output image obtained with the first model (Fig. 2-b):

e contours extraction (curves joining continuous points
along the boundary with same color or intensity);

« selection the best contour, containing the area of inter-
est. We keep the region with the highest ratio r; =
min(w;, h;) /max(w;, h;), where w; and h; are the width
and height of the i-th rotated rectangle containing the
contour for each of the proposed areas of interest;

o computation of the tilt angle to obtain an horizontally
aligned image from the selected area of interest;

o dilation of width and height of the selected area with
an increment d = 0.3 - min(w, h) (see the example in
Fig. 2-c and all the examples in Fig. 3);

« crop of the image using the expanded area;

B. Recognition phase

The recognition phase is based on a deep neural network
that takes as input a meter image and is capable of producing
the actual meter reading as output, as shown in Fig. 2 labelled
with “CNN-2". The network is composed of a convolutional
backbone of 8 blocks, each made up by a convolutional layer
with Rectified Linear Units (ReLU) as activation function,
a max pooling layer and a batch normalization layer. The
number of convolutional filters is 48, 64, 128, 160, 192, 192,
192 for convolutional layers, while the kernel size is 5 X 5
for all of them. All pooling layers use a kernel of 2 x 2
and alternate stride 2 and 1. After the convolutional part we
stack 2 fully connected layers, followed with 6 small fully
connected layers where the first one has only 7 neurons to
predict the labels length (0,...,5, and more than 5), while
others have 11 neurons representing the digit variables with
11 possible values. Finally, outputs of each fully connected
layer are treated as a typical classification and trained using the
Cross-Entropy loss function. The final loss function is defines

as:
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where K represents the number of digits to predict, y is the
predicted probability distribution and ' is the true distribu-
tion (the one-hot vector with the digit labels). The network
architecture with its main parameters is shown in Fig. 4.
Once the data is ready, we apply the classifier to get
digits from images. This model is trained with manually
assigned labels. For example, if an image contains the value
“00040, 87, the label would be “40”. The model has the
ability to discard the decimal and leading zeros parts during
training and testing phases. We observed that the majority of
numbers in meter images does not exceed more than 5 digits,
so we set the maximum length to 5 thus K = 6. The last
fully connected layer is made up of two different kinds of
output neuron: one for predicting the length of the digit in the
image and the other one predicting the output values. Possible
values for the length prediction are 7: values from 0 to 5 and
one output indicating a length of “more than 5”. Similarly the
output neurons for recognizing digits have 11 possible values,
from 0 to 9 plus a blank character.

IV. DATASET

The dataset used in this work is obtained from private
multi-utility companies. We cannot release the original data
because of privacy concerns. However, we are publishing a
version which does not contain customer information. We
create various splits in the dataset: one for detection and one
for the recognition phase. A third split test the whole pipeline.

The dataset for the detection phase contains 4566 labelled
images for the train and 3365 for the test. The split consists
of image pairs: RGB input image and a mask with pixel
values in {0, 1} to represent background and area of interest,
respectively. Fig. 5 shows three examples of detection used as
ground truth. From the same figure, we can see that selected
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Fig. 2: Graphical representation of the proposed pipeline. On the left we have the CNN used for detection. It receives as input
an image (a) and gives as output an image map with the area of interest (b). On the right, the second CNN performs the
reading starting from the cropped and rotated detected region (c), producing the final reading containing length and predicted

numbers (d).

Fig. 3: Cropped samples extracted from the dataset before the
recognition phase.

areas of interest do not have well-defined boundaries. Thus
shapes and size can vary based on the annotator. We called
this dataset split meter detection.

The recognition split consists of 30240 images divided into
24195 and 6045 for train and test sets, respectively. We call it
meter recognition. It contains pairs of input RGB images and
integer numbers to represent meter values. In this split, images
are different for each utility meter typology. This makes the
task even more challenging because images of the mechanical
gas meter are visually different from digital electricity meter.
In addition, we observed that countries have different formats
of utility meters. For example, European meters are different
from South Asian meters.

Finally, we build another set of 15452 images called test
split to test the full pipeline. For fair comparisons, the sets
mentioned above are disjoint. This dataset is challenging
because it contains images for various meter typologies. Fur-
thermore, the dataset has images with scale variations, strong
glares etc. (See examples in Fig. 6 and 7).

V. EXPERIMENTS

We perform a series of experiments to show the effective-
ness of the proposed approach. These consist of evaluating
detection and recognition phases independently. In addition,
we evaluate the entire pipeline.

A. Implementation details

The hyperparameters for the detection model are fairly
standard. We train the model for 100000 iterations with a
batch size of 8 and learning rate set to 1e~%. Similarly, for the
recognition phase, we use a batch size of 32 and learning rate
set to le~2. During the training of the recognition model, we
do not set a maximum number of iterations. However, we use
patience to stop the training process, and we set this value to
100.

B. Experiment on detection phase

In the first experiment, we use images from the detection
split. Feeding an input image to the model, we get the mask
containing labels of the area of interest. Then, we employ the
mask to calculate the Intersection over Union (IoU) metric,
defined in Eq. 2:

AO
IoU = S 2)

where AO is the area of the overlapping rectangle between
predicted and ground truth, while AU is the area of union
rectangle between predicted and ground truth.

Results on detection phase are shown in Table I. Note
that, we calculate IoU for various thresholds ranging from
0.1 (Poor) to 0.9 (Excellent). We found out that a value
of 0.4 (Good) produces an accuracy of 91.06%. However,
increasing this value leads to lower results. We observed that
such situation arises from different ways of annotating the data
(see examples available in Fig.5).

C. Experiment on recognition phase

In the second experiment, we use images from the recog-
nition split. Note that images used in this experiment contain
only the area of interest, previously detected from the model.
Sample images are shown in Fig. 3. We compute the overall
accuracy considering a prediction right only if numbers inside



TABLE I: IoU evaluation with thresholds ranging from 0.1 (Poor) to 0.9 (Excellent) with step size of 0.1.

[ ToU Threshold 0.1 0.2 0.3

0.4 0.5 0.6 0.7 0.8 0.9 |

[ Accuracy 99.37 99.16 9835 91.06 69.87 4041 1742 2.63 0.002]
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Fig. 4: The CNN architecture used to recognize numbers start-
ing from the output crop of CNN-1. This model automatically
predicts the length (5 in this example) and the values of each
digits to compose the number (68853 in this example), without
any segmentation step.

Fig. 5: Examples of images with superimposed ground truth
(area with green borders) and the relative prediction of the
CNN-1 model (area with blue borders). These examples high-
light the lack of a clear boundary in the area of interest and
consequently the dependency of the ground truth from the
annotator.

Fig. 6: Examples of scale variation images from the dataset.

the image are classified correctly. In addition, we calculate the
accuracy for each number position in the image. In Table II,
we calculated the accuracy performance for each position
of the digits in the meters. Furthermore, we calculated the
overall accuracy for the recognition phase is 82.70% over the
entire meter values. We obtain this value from already cropped
(6045) test images available in the recognition split.

D. End-to-end experiment

In the third experiment we evaluate the entire pipeline. First,
we apply the detection phase to get the area of interest and
then we feed it to the recognition phase to obtain the final
prediction.

Our pipeline achieves promising results considering that

Fig. 7: Examples of images with strong glare from the dataset.



TABLE II: Accuracy computed on recognition phase.

| Phase Ist 2nd 3rd 4th 5th Ace. |
\ Recognition 94.60 89.22 92.76 95.10 96.60 82.70 \
TABLE III: Accuracy computed on the full pipeline.
| Phase Ist 2nd 3rd 4th 5th Ace. |
\ Pipeline 92.94 88.99 90.95 92.24 92.92 85.60 \
gy i \IHIIMII ! B .

Fig. 8: Random examples of upside down images from the
dataset.

it recognizes numbers from three different meter typologies.
Furthermore, the pipeline is capable to produce numbers from
mechanical and digital meters. Moreover, our recognition
model is more robust than the one proposed in [3], because it
can predict digits from upside down images. In some cases,
due to the perspective with which the image is captured, when
rotating the area of interest, we obtain a horizontally aligned
image but with numbers rotated by 180 degrees as shown in
Fig. 8.

Applying the entire pipeline to the test split, we achieved
an accuracy of 85.60%. In addition, we calculate the accuracy
of each number based on the position. Results are in Table III.
Analyzing results it can be observed that accuracy of the
second most significant digit is significantly lower than others.
We believe that this happens because of low variability in the
dataset for digits in that particular position. We observed that
it is difficult to have high variability for most significant digits
because most of times they are either “0” or “1”.

Average time required to perform both steps in our pipeline
on a single image is of 0.12 seconds on a NVIDIA GeForce
GTX 1080 GPU, this means that our approach could also be
used in real-time scenarios.

Furthermore, we present qualitative evaluation of the
pipeline. Fig. 9 shows some examples of correct readings
where the performance of the pipeline is particularly robust.
In addition, we included some complicated error cases where
the pipeline fails to predict the correct output digits.

VI. CONCLUSION

In this paper, we proposed a pipeline to detect and recognize
digits of household meters from images. Our method has been
tested on different typologies of meter, ranging from mechani-
cal to electric of various kinds: gas, water and electricity using
two deep models, one for detection and one for recognition.

The CNN performing the reading of meters predicts the
length and values for each digit to compose the number,

Output: 995

Output: 161

Output: 1134 Output: 11591  Output: -

'“,___- e
: m|m||uu|u||M||\ NIH %

1 zuo:
@ & gnletun

zmasq i

mouscunosuin S.A. BARCELON

ﬁ

Output: 14141 Output: 66081 Output: 477 Output: 4745

Fig. 9: Qualitatively results of various typologies of the meter.
In each row, the first two samples are correctly classified
while the remaining show misclassification. Strong glares and
shadows are the main issues which lead the algorithm to
predict wrong results.

without any previous segmentation step. This is a key aspect
because it allows to quickly create a large-scale ground-truth
dataset.

The proposed pipeline is robust against severe perspective
distortions, different scales and even upside-down images.
Results obtained are promising and the execution time required
to apply the whole pipeline makes it possible to employ it in
real-time applications.
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