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Abstract. Text localization from scene images is a challenging task that
finds application in many areas. In this work, we propose a novel hy-
brid text localization approach that exploits Multi-resolution Maximally
Stable Extremal Regions to discard false-positive detections from the
text confidence maps generated by a Fast Feature Pyramid based sliding
window classifier. The use of a multi-scale approach during both feature
computation and connected component extraction allows our method
to identify uncommon text elements that are usually not detected by
competing algorithms, while the adoption of approximated features and
appropriately filtered connected components assures a low overall com-
putational complexity of the proposed system.

1 Introduction

Text localization from scene images has recently gained attention due to its
potential application in various areas.

Using the categorization criteria of Pan et al. [1], algorithms for text local-
ization can be classified as either region-based [1–4] or connected component
CC-based [5–9]. Region-based methods exploit local features and sliding win-
dow classifiers to identify potential regions of text and build text confidence
maps, while CC-based methods are based on the observation that text characters
usually show uniform characteristics and therefore appear as stable connected
components within the processed images.

Both of the previously mentioned approaches have disadvantages: region-
based methods need to process the image in a multi-scale manner to obtain satis-
fying results, this usually causes those methods to be computationally expensive
as they spend most of their processing time performing feature computation at
the different scales. Moreover, sliding window classifiers for text localization are
prone to false-positive errors as some local regions in scene images are virtually
indistinguishable from text characters [10].

Most CC-based text localization methods [5–9] identify stable connected
components using Maximally Stable Extremal Regions (MSER) [11]. Even though
the basic assumption of CC-based algorithms is that text characters always ap-
pear as MSER, this does not always hold true, e.g. almost none of the published
CC-based algorithms participating in ICDAR’13 [12] competition successfully
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Fig. 1. Examples of uncommon and difficult text components successfully detected by
the proposed method (images from ICDAR’03 and ICDAR’13).

detect blurred or uncommon (graffiti, company logos, etc.) text characters, as
those elements either do not appear as stable connected components or are dis-
carded due to their irregular geometric properties.

In this work, we pair Fast Feature Pyramids and Aggregated Channel Fea-
tures [13] with Multi-resolution Maximally Stable Extremal Regions (MR-MSER)
[14] to propose a hybrid algorithm for text localization that exploits the key ideas
of region-based and CC-based methods but tries to overcome some of their pre-
viously mentioned limitations.

Without losing detection accuracy, in multi-scale approaches some image fea-
tures (gradients, etc.) can be approximated from nearby scales within the same
feature pyramid, instead of being explicitly computed at every level, to reduce
by 2 orders of magnitude the time required to complete the feature computation
process [13]. In our method, an approximated feature based classifier trained
with natural, synthetic and semi-synthetic data, is used to efficiently build text
confidence maps that are subsequently refined using MR-MSER.

Throughout our experiments we prove that MR-MSER excels at extracting
entire words of text from scene images as single connected components, this also
holds true for words composed by uncommon and difficult character fonts. We
exploit this ability to discard false-positive text regions from the text confidence
maps generated by the sliding window classifier.

In our system, most of the initially extracted MR-MSER are stacked and
discarded; together with the use of approximated feature, this choice assures
that the proposed method maintains an acceptable computational complexity
even though it employs a multi-scale approach during both feature computation
and connected component extraction.

As shown by the publicly available detection results for ICDAR’13 (some
examples are provided in Fig. 1), despite its simplicity, the proposed approach
succeeds where competing CC-based text localization methods usually fail, and
achieves good results for ICDAR’s Challenge 2 Task 1.1

1 http://dag.cvc.uab.es/icdar2013competition/?ch=2&com=results
Method: iwrr2014.



Text Localization based on Fast Feature Pyramids and MR-MSER 3

2 Related Works

2.1 Region-based Text Localization

Among region-based text localization methods [1–4], the works that are closer
to the proposed method are the ones of Pan et al. [1] and Wang et al. [4].

Pan et al. [1] build a text confidence map by processing images in a sliding
window manner, using Waldboost and HOG features. The confidence map is
used, together with other geometric features and a Multi-layer Perceptron, to
compute the binary and the unary weights of a component neighbourhood graph
built over a set of connected components extracted using Niblack’s text binariza-
tion algorithm. CRF are used to filter out non-text components from the graph,
while the remaining neighboring elements are clustered together into Minimum
Spanning Trees to form text words. In our approach, we exploit a similar text
confidence map to identify potential regions of text.

Wang et al. [4] perform end-to-end text recognition using Random Ferns and
Pictorial Structures. The part of their work that is related to ours is the choice of
using synthetic positive training data: roughly 1000 images are synthesized per
character using 40 different fonts, adding Gaussian noise and applying random
affine deformations (similarly to [2]). The classifier trained exclusively using
synthetic positive data achieves the same F-score of a NN classifier trained with
HOG features extracted from native data.

Another novel idea from [4] is the choice of extracting negative training sam-
ples from classes of Microsoft Research Cambridge Object Recognition Image
Database (MSRC) [15]: classes like buildings and countryside resemble the back-
ground patterns of ICDAR’s images and help in reducing the number of false-
positive detections generated by sliding window classifiers.

2.2 CC-based Text Localization

Most CC-based text localization methods [5–7] either exploit MSER [11] to iden-
tify potential text components that are filtered and clustered together to form
words, or use the Stroke Width Transform [10] algorithm to identify connected
components having low intra-stroke variance [16].

Neumann et al. [17] proved that Extremal Regions extracted from multi-
ple image channels cover almost 95% over ground-truth character annotations
for ICDAR’11; however, to decrease the complexity of the system, only a sub-
optimal subset of those channels is used in [17].

Other works focused on maximizing the effectiveness of MSER in terms of
number of text elements successfully captured as stable components, e.g. Li
et al. [6] showed that blurred and low quality characters become stable when
extracting MSER from images incorporating gradient magnitude and intensity
channels information.

Another technique for improving the coverage of MSER is the one of Forssén
and Lowe [14]: a pyramid of images is built and MSER, called MR-MSER, are
extracted at multiple scales (1 scale per octave). This multi-resolution approach
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Fig. 2. Aggregated Channel Features (ACF) extracted from negative samples from
MSRC and positive natural, synthetic and semi-synthetic samples from different
datasets are used to train boosted depth-two decision trees.

causes some of the unstable regions in the original image to become stable at
low scales in the pyramid, where the original image has lost most of its details
as it has been sub-sampled and blurred multiple times with a Gaussian kernel.

In the proposed approach, we adopt the multiple image channel technique
of [17] to extract words of text from scene images by computing multi-channel
MR-MSER, appropriately filtering out useless regions extracted within the same
pyramid’s octave to keep an acceptable computational complexity.

2.3 Fast Feature Pyramids

Fast Feature Pyramids [13] revolutionized multi-scale sliding window approaches
by showing that some image features (gradients, etc.) can be approximated from
nearby scales within the same pyramid rather than being computed explicitly;
since their introduction, Fast Feature Pyramids have been used in many works
to build effective and efficient rigid object recognition detectors [18].

Based on the analysis of [19] on how to build the best classifier for rigid object
recognition, we use a bootstrapped approximated feature based multi-scale linear
classifier to perform text localization from scene images.

3 Proposed Model

The proposed approach is presented in this section: a binary classifier based on
Fast Feature Pyramids and Aggregated Channel Features (Sec. 3.1) is trained
using natural, synthetic and semi-synthetic data collected from multiple datasets
or artificially generated (Sec. 3.2); predictions from the classifier are used to build
a text confidence map in which potential regions of text are highlighted (Sec. 3.3);
the text confidence map is used, together with MR-MSER (Sec. 3.4), to identify
potential bounding boxes for lines of text in the processed image (Sec. 3.5).

An analysis of the computational complexity of the proposed approach and
implementation details are provided in Sec. 3.6 and Table 1.
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(a) source (b) scale 1.0 (c) scale 0.5 (d) scale 0.25 (e) scale 0.12

Fig. 3. MSER extracted at different levels of the pyramid capture different details: at
low scales (≤ 0.5), characters are merged together and words are captured as single
components, this also holds true for uncommon fonts (e.g. “Apocalypse Now”); in some
instances, difficult characters that are not detected at the original scale are correctly
identified as stable connected components at lower levels in the pyramid (e.g. “£99”,
graffiti).

3.1 Text Region Detector

The first step in our pipeline is to build a text confidence map by detecting
potential regions of text using a multi-scale sliding window ACF detector [13].

ACF uses Aggregated Channel Features, which are extracted by smoothing
the processed image with a [1 2 1]/4 filter and then computing 10 different
channels: normalized gradient magnitude, histogram of oriented gradients (6
orientations) and LUV. The channels are then condensed into 4×4 blocks and
once again smoothed using the same approximated Gaussian kernel before being
concatenated together to form single descriptors.

In our system, ACF is tuned to reach acceptable detection rates for text
detection from scene images by setting the sliding window size to 32×32 pixels
and the window stride to 16 pixels both in the horizontal and vertical directions.
To deal with the large variation in size of text components in ICDAR datasets,
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Fig. 4. Augmenting the positive training set with synthetic and semi-synthetic data
increases the detection rate of the approximated feature based classifier.

we increase the size of the image pyramid by computing 1 octave above the
canonical image scale. The final image pyramid goes from 2× the size of the
original image I to at most 32×32 pixel and has 8 scales per octave. For each
octave, 7 scales out of 8 are approximated using λ coefficients [13] inferred from
1000 random samples from the positive training set.

In our experiments, increasing the number of scales per octave or decreasing
the number of approximated scales per octave did not affect the final results,
on the other hand, decreasing the size of the image pyramid deeply affects the
final detection rate, e.g. removing the highest octave while maintaining the same
window size almost halves the accuracy of the classifier as tiny text components
are not correctly detected. The same occurs when removing low pyramid levels
or when improperly altering the size of the sliding window.

The ACF classifier is composed by 2048 quickly boosted [20] depth-two de-
cision trees (3 stump classifiers per tree, as in Fig. 2).2 Multiple rounds of boot-
strapping are performed, at each round false-positive samples collected from the
previous round are added to the negative training set, this shifts the decision
boundary of the classifier and reduces false-positive detections in the subsequent
round. Unlike [21], false-negative are not bootstrapped because text elements
classified as background are usually identified using MR-MSER, as described in
Sec. 3.5. Even when using 100000 samples and 3 rounds of bootstrapping, the
classifier can be trained in less than 3 minutes on a Intel R© Core i5 (see Table 1).

3.2 Training Data

Detection rates of linear classifiers are affected by both the quality/amount of
training samples and the discriminative power of features extracted from those

2 http://vision.ucsd.edu/∼pdollar/toolbox/doc/index.html
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(a) source (b) tcm (c) tex (a) source (b) tcm (c) tex

Fig. 5. True-positive regions discarded when thresholding the text confidence map tcm
(b) are recovered in the textness map tex using MR-MSER (c).

samples. Considering that state-of-the-art results have been obtained in rigid
object recognition by methods based on ICF and ACF [13, 18], we assume that
good results may also be obtained in text detection using the same set of features
when sufficient training data is collected. For this reason, we not only gather
positive/negative samples from multiple datasets but we also generate additional
semi-synthetic positive images by combining natural and synthetic images.

The process of extracting negative samples is straightforward: images not
containing text are collected from some classes of MSRC database [15] (benches,
chairs, buildings, chimneys, kitchen utensils, miscellaneous, scenes, trees and
windows). In total, 1843 images containing only background components are
gathered. For each image, a 4-level image pyramid (20%, 50%, 80% and 100% of
the original image size) is built and 32×32 pixels patches are randomly extracted
from all the pyramids, until a total of 50000 negative samples are gathered.
Extracting negative examples at multiple scales reduces the number of false-
positive detections generated at low octaves in the feature pyramid.

Gathering positive training samples is a challenging task, poor detection rates
were obtained when training the ACF classifier using just the ≈5400 samples
from ICDAR’13 [12] train set (see Fig. 4). To obtain acceptable performances,
we augmented the set of positive training data with: ≈8000 images from the
GoodImg class of Char74k English dataset [22], ≈6200 artificial images from the
publicly available Synth dataset [4] (vertically cropped to remove neighbouring
characters) and ≈30000 semi-synthetic samples obtained by combining natural
background patches from MSRC images with synthetic fonts.

More in detail, semi-synthetic images are generated by placing random sized
artificial characters in random positions over the images previously collected
from MSRC to extract negative samples, random jitter (translation and rota-
tion) is applied to increase the robustness of the classifier. Characters are cropped
to their bounding boxes (leaving at most 5 pixels of random padding in every
direction) and sub-sampled/up-sampled to 32×32 pixels. In order to keep an ac-
ceptable degree of contrast between the synthetic character and its surroundings,
we compute the histogram of the patch on which the character is pasted and
discard samples that are human unreadable (zero contrast between character
and background).
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(a) source img (b) tcm (c) thr. tcm (d) detection

Fig. 6. Text line formulation algorithm pipeline: the text confidence map (b) is thresh-
olded (c) and words are identified using both the textness map tex and MR-MSER
(d), final components are grouped together using Mean-shift.

Figure 4 shows how the positive sample sets we aggregate complement each
others: samples from ICDAR train set and Char74k (Fig. 4a) contain uncommon
and handmade characters that cannot be artificially generated; synthetic data
from Synth (Fig. 4b) is useful to learn the shapes of artificial characters placed on
plain backgrounds; semi-synthetic samples (Fig. 4c) are often placed on cluttered
backgrounds and degraded due to sub-sampling/up-sampling, and thus represent
a good connection point between synthetic and natural data.

3.3 Text Confidence Map

Let {s0, . . . , sn} be the scores assigned by the trained ACF classifier to each po-
sition of the sliding window in the image pyramid built for the processed image;
a greedy Non-maximum Suppression (NMS) is performed to discard overlapping
regions. In detail: (i) we discard regions having score lower than the average de-
tection score µ({s0, . . . , sn}); (ii) resize the remaining ones to half of their sizes
to obtain a good separation between detected text regions, as in [4]; (iii) iterate
over them by descending score and, if the region has not yet been suppressed,
we suppress all the other non-suppressed regions having intersection-over-union
IoU > 0.5 with the one currently selected; (iv) surviving regions are restored to
their original sizes.

Using the suppressed regions we define a set of local text confidence maps
{tc0, . . . , tcj}, one for each level of the image pyramid. The final text confidence
map tcm is obtained by stacking all the local confidence maps together tcm =∑j

i=1 tci
n . Finally, tcm is normalized in [0, 1] and thresholded at t = 0.5 to remove

false-positive regions. True-positive regions discarded because of the threshold
are recovered using MR-MSER, as explained in Sec. 3.5 (see Fig. 5).
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3.4 Textness Map and MR-MSER

The text confidence map tcm is used, together with MR-MSER [14], to generate
a textness map tex in which the value of each pixel denotes the probability it
belongs to a text component in the original image I.

To extract MR-MSER, we compute 7 channels for I (RGB, HSI and ∇) and
build an independent scale pyramid for each channel. MR-MSER are detected
at each level of the pyramid, which has 1 octave per scale and a minimum size
of 256×256 pixels; images in the pyramid are obtained by blurring and sub-
sampling using a 6-tap Gaussian kernel with σ = 1. To reduce the final number
of MR-MSER and discard the duplicate ones, at each level of each pyramid
we retain only the larger MSER and filter out the smaller nested regions. This
significantly decreases the final number of extracted MR-MSER: on average we
discard more than 2000 regions from the ≈2500 initially identified.

Similarly to the text confidence map tcm, the textness map tex is built by
iterating over the extracted MR-MSER and, for each of them, increasing the
value of its pixels in the tex map by the average value of those pixels in tcm.

3.5 Text Line Formulation

The last step in a text localization framework consists in identifying the bounding
boxes for words of text in the processed image; we formulate an algorithm that
can be applied to different datasets without extensive tuning.

We propose a peak-based text grouping algorithm, in detail: (i) local max-
ima of the column-wise histogram of tex are identified, those peaks correspond
to rows {r0, . . . , rk} of tex having maximum textness value compared to their
neighbours; (ii) for each peak row ri, connected components {cc0, . . . , ccq} inter-
secting ri in the text confidence map tcm are identified; (iii) each cci is resized to
the size of the minimum bounding box enclosing MR-MSER extracted from the
image that have a pixel-wise IoU > 0.2 with cci; (iv) each resized cci is assigned
a score computed as the average intensity of its pixels in tex, and overlapping
components are suppressed (as in Sec. 3.3); (v) neighbours connected compo-
nents are merged into text lines using Mean-shift, components are clustered on
the basis of their centroid positions. The pipeline is summarized in Fig. 6.

In phase (iii), we reshape regions labelled by the classifier as potential text
areas according to the boundaries of MR-MSER extracted from the image. As
it is possible to observe from Fig. 3 and Fig. 7a, MR-MSER extracted at low
levels in the scale pyramid are often able to capture entire words (instead of
single characters) as at those low levels most details of the original image are
lost, and this causes characters to be merged together and words to be identified
as single stable regions. Exploiting the word detection ability of MR-MSER to
discard noise regions from the text confidence map without worrying about losing
true-positive areas is the key idea of our method.

By grouping text components just on the basis of their centroid positions
(ignoring scale, orientation, etc.), our algorithm can capture text in any possi-
ble orientation, even though ICDAR datasets do not contain examples of non-
horizontal text components. The major drawback of ignoring orientation etc.
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Table 1. Implementation details. Times refer to a 640×480 image and≈500 MR-MSER
processed on a desktop IntelR© Core i5.

Task Time (s) Implementation Type

Gathering p/n training data 103.40 Parallel
Training the classifier 185.58 Par. (Seq. feature computation)

Text confidence map 0.29 Parallel
Textness map 0.45 Parallel
Text line formulation 0.01 Parallel

is that the proposed line formulation method frequently aggregates lines and
phrases into single bounding boxes; such behaviour is penalized by some evalua-
tion metrics (see Sec. 4.3), and additional processing may be required to split the
detected bounding boxes into words before they are passed on to OCR engines.

3.6 Implementation Details

Timings information for the proposed approach are given in Table 1: gather-
ing positive/negative samples and training the classifier for ICDAR’13 dataset
require less than 5 minutes on a desktop Intel R© Core i5 with 12 GB RAM.

On average, a 640×480 image can be fully processed in ≈0.75 seconds. The
computational complexity of the method can be further reduced by decreasing
the number of channels from which MR-MSER are extracted, at the cost of
sacrificing the accuracy of the whole system.

Using the classifier configuration of Sec. 3.1 and the training data from
Sec. 3.2, RAM consumption during training is ≈6 GB. On average, ≈500 MB of
RAM are sufficient to build the textness map for a 640×480 image.

4 Experiments

In this section, we provide an experimental evaluation of the components de-
scribed in Sec. 3: the detection rate of the ACF text region detector introduced
in Sec. 3.1 is evaluated in Sec. 4.1; MR-MSER are compared with MSER at
detecting entire words of text in Sec. 4.2; text localization results achieved by
the proposed approach for ICDAR’03 and ICDAR’13 datasets are presented in
Sec. 4.3 and compared with competing published algorithms.

4.1 Classifier and Training Data

Figure 4d shows the PR curves for multiple ACF classifiers trained using the
same parameter configuration but different training samples. PR curves are com-
puted as in [2]: the text confidence map tcm is thresholded multiple times to
yield binary decisions at each pixel and compared pixel-wise with ground-truth
annotations from ICDAR’13 test set.
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Image Channels
MR-MSER MSER
chars words chars words

∇ 0.56 0.69 0.52 0.56
RGB 0.63 0.40 0.56 0.25
HSI 0.62 0.51 0.56 0.36
HSI ∪ ∇ 0.71 0.77 0.67 0.65
RGB ∪ ∇ 0.72 0.73 0.68 0.61
HSI ∪ RGB 0.70 0.56 0.64 0.41
HSI ∪ RGB ∪ ∇ 0.75 0.78 0.71 0.66

(a) MR-MSER vs. MSER
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Fig. 7. Evaluation of MR-MSER for word detection: (a) MR-MSER are compared with
MSER at detecting single characters and entire words, while varying the image channels
from which they are extracted, as in [17]; (b) word detection accuracy evaluation and
timings information for MR-MSER, MSER and object proposal methods on ICDAR’03,
while varying the intersection-over-union IoU coverage tolerance.

This experiment shows how training data affects the performance of the
ACF classifier: unsatisfying detection rates are obtained when training using just
the samples from ICDAR’13 train set; significantly better results are obtained
when combining ICDAR’13 train data with samples from Char74k; acceptable
detection accuracies are achieved when augmenting the positive training set with
synthetic and semi-synthetic data collected as described in Sec. 3.2.

In every experiment the training set has been kept balanced, meaning that
the number of negative samples has always been equal to the number of positive
samples. AUC of the PR curve for the classifier trained with natural, synthetic
and semi-synthetic data is higher than the one of [2], proving the effectiveness
of approximated feature based sliding window classifiers for text localization.

4.2 Word Detection via MR-MSER

The proposed method relies on the ability of MR-MSER to identify entire words
of text from scene images (see Sec. 3.4 and Sec. 3.5).

In Fig. 7a, MR-MSER and MSER are compared at the task of identifying
single characters (chars) and entire words (words) on ICDAR’03, while varying
the image channels from which MR-MSER and MSER are extracted. In our
experiment, a character/word is considered identified if there exists at least
one MR-MSER/MSER, from the ones extracted, whose bounding box has an
intersection-over-union IoU > 0.5 with the ground-truth annotation of that
character/word.

Even though in this experiment we compared filtered MR-MSER (smaller
nested regions are discarded as described in Sec. 3.4) with unfiltered MSER (all
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the regions are retained for evaluation), MR-MSER outperform MSER both at
detecting single characters and entire words for all the evaluated combinations of
image channels. On average, the extraction of MR-MSER requires 0.2 sec using
a parallel implementation (multiple scales within the same octave are extracted
at the same time), while the computation of MSER requires 0.1 sec per image.

In order to measure how accurately MR-MSER detect entire words of text
at low blurred scales in the image pyramid, in Fig. 7b they are evaluated on
ICDAR’03 while varying the IoU coverage tolerance. Since text characters and
words satisfy some of the conditions analysed in [23], object proposal methods
have also been added to the comparison to see whether they constitute a valid
alternative to MR-MSER or MSER at detecting words of text in scene images.
Results are measured as in [24]: for each algorithm, at most 1000 bounding boxes
per image are selected from the ones initially extracted; Detection Rate (DR, y-
axis) is the percentage of ground-truth words covered by those bounding boxes.
A ground-truth word is covered if there exists at least one bounding box, among
the 1000 selected, that has an IoU > x with the ground-truth bounding box
of that word. The value of x varies on the x -axis, by increasing x we require
the identified bounding boxes to match more precisely the ground-truth data in
order for a word to be considered covered.

The comparison is carried out as follows: (i) Objectness: among the ≈1850
ranked proposals generated per image, the top 1000 are selected for evaluation.
MS, CC and SS cues are learnt from 50 images from ICDAR’03 training set;
(ii) Selective Search: evaluated in its fast variant, 1000 windows are uniformly
sampled from the ones initially extracted; (iii) Prims: a grid search is performed
in [0, 5] for color similarity, common border ratio and size, the parameters pro-
viding the best results for 1000 unique windows and IoU > 0.5 are used for
evaluation; (iv) Proposals: evaluation is performed considering the bounding
boxes surrounding the identified ranked segmentations proposals, top 1000 win-
dows are selected from the ones initially extracted; (v) MR-MSER: extracted
as described in Sec. 3.4, the bounding boxes surrounding each MR-MSER are
considered for evaluation, on average, no more than 500 windows per image
are generated; (vi) MSER [11]: extracted from RGB, HSI and ∇ channels, the
bounding boxes surrounding 1000 unique MSER are uniformly sampled from the
initial set. For references to the evaluated object proposals algorithms see [24].

MR-MSER prove their effectiveness as robust word detector from scene im-
ages by achieving higher detection accuracies throughout all the tolerance values.

4.3 Text Localization Results

In Tables 2a and 2b, the proposed text localization approach is evaluated on
ICDAR’03 and ICDAR’13 datasets.

ICDAR 2003 [28] contains a total of 509 images: 258 for training and the
remaining 251 for testing. The classifier is trained using 45000 positive samples
from ICDAR’03 train set, Char74k, Synth and Semi-synth and 45000 negative
samples from MSRC. Precision, Recall and F-score are computed by looking for
the best match between each detected bounding boxes and each ground-truth
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Table 2. Text localization results for ICDAR’s Challenge 2 Task 1.

(a) ICDAR’03. Evaluation metric: [28]

Method Precision Recall F-score

Li [6] 0.79 0.64 0.71
Kim [5] 0.78 0.65 0.71
Proposed 0.71 0.74 0.70
TD-Mixture [16] 0.69 0.66 0.67
Yi [25] 0.73 0.67 0.66
Epshtein [10] 0.73 0.60 0.66
Li 0.62 0.65 0.63
Chen 0.60 0.60 0.58
Neumann [7] 0.59 0.55 0.57
Zhang 0.67 0.46 0.55

(b) ICDAR’13. Evaluation metric: [12]

Method Precision Recall F-score

Proposed 0.86 0.70 0.77
Yin [9] 0.88 0.66 0.76
Neumann [26] 0.88 0.65 0.74
Bai [27] 0.79 0.68 0.73
Shi [8] 0.85 0.63 0.72
Shijian 0.75 0.69 0.72
Yang 0.70 0.65 0.67
Fabrizio 0.74 0.53 0.62
Baseline 0.61 0.35 0.44
Inkam 0.31 0.35 0.33

annotation [5]. This evaluation metric penalizes approaches that detect text at
line level, as only one-to-one matches are taken into account. Since our method
often captures entire phrases as single components, it generates numerous many-
to-one detections and therefore performs slightly worse than [5, 6].

ICDAR 2013 [12] contains a total of 462 images: 229 for training and 233 for
testing. The classifier is trained using 50000 positive samples from ICDAR’13
train set, Char74k, Synth and Semi-synth and 50000 negative samples from
MSRC. Unlike ICDAR’03, results are measured using a new evaluation met-
ric [12], which takes into account one-to-one, one-to-many and many-to-one
matches between ground-truth annotations and detected bounding boxes. The
competition protocol penalizes methods that perform text localization at charac-
ter level (one-to-many) but does not inflict any penalty to methods that provide
text detection at line level (many-to-one). F-score of the proposed method is
higher than competing approaches both when measured using ICDAR’s evalu-
ation metric or DetEval [29]. Complete results are available on ICDAR’s web
page. For references to all the evaluated algorithms see [12, 28].

Using classic MSER in place of MR-MSER, F-score of the proposed method
decreases by roughly 10% on both datasets, as expected from the analysis of
Sec. 4.2, where multi-channel MR-MSER covers 78% of ICDAR’s ground-truth
words while MSER provides a coverage of 66%.

Negative detection results are provided in Fig. 8, the proposed method fails
when MSER extracted at multiple scales do not capture text components or
when the text confidence map is noisy and text components are lost due to
threshold (e.g. “HHH CELCON”). It is in fact possible to obtain different val-
ues of Precision/Recall by shifting the threshold value used during the text
confidence map building phase described in Sec. 3.3: lower threshold values in-
crease the Recall of the algorithm and decrease its Precision, while higher values
discard more components from the text confidence map and therefore decrease
the Recall of the whole system while increasing its overall Precision.
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(a) Positive (b) Negative

Fig. 8. Examples of positive and negative text localization results for ICDAR’13.

5 Conclusion

A novel method for text localization from scene images has been proposed, it
exploits both the latest advancements in rigid object recognition and MR-MSER
to obtain good results for text localization from scene images. In the proposed
solution, stable connected components are not discarded on the basis of their
geometric properties; this assures that uncommon text fonts that are typically
filtered out as noise elements by competing approaches are correctly retained
and identified. Thanks to the use of approximated multi-resolution features and
appropriately filtered connected components extracted in a multi-scale multi-
channel manner, the proposed system is computationally efficient to train and
test. This enables its application to numerous problems in which execution and
training times are critical factors.
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