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The proposed method enables the user to interactively correct the errors committed by an initial GrabCut segmentation phase by “tapping” the areas

of the processed image that were wrongly labeled during the initial phase; the whole method is specifically designed to produce high quality segmentations

on mobile devices.

Abstract—In this paper we propose an interactive approach
for object class segmentation of natural images on touch-screen
capable mobile devices. The key research question to which this
paper tries to give an answer is: can we effectively correct the
errors committed by an automatic or semi-automatic figure-
ground segmentation algorithm while also providing real time
feedback to the user on a low computational power mobile
device? Many research works focused on improving automatic
or semi-automatic figure-ground segmentation algorithms, but
none tried to take advantage of the existing touch-screen tech-
nology integrated in most modern mobile devices to optimize
the segmentation results of these algorithms. Our key idea is
to use superpixels as interactive buttons that can be quickly
tapped by the user to be added or removed from an initial
low quality segmentation mask, with the aim of correcting the
segmentation errors and produce a satisfying final result. We
performed an extensive analysis of the proposed approach by
implementing it both on a desktop computer and a mid-range
Android device; even though our method is extremely simple, the
results we obtained are comparable with those achieved by other
state-of-the-art interactive segmentation algorithms. As such, we
believe that the proposed approach can be exploited by most
image editing mobile applications to provide a simple but highly
effective method for interactive object class segmentation.

Keywords-Interactive Image Segmentation; Object Class Seg-
mentation; GrabCut Segmentation; Superpixel Segmentation.

I. INTRODUCTION

Object class segmentation is defined as the task of iden-
tifying and extracting foreground objects from real world
images [1]. While recent advancements in this field have

pushed the accuracies of fully automatic techniques for solving
this task much further than they were a few years ago [2],
[3], in professional image editing it is still not possible to
adopt fully automatic algorithms to select object boundaries as
their current state-of-the-art results do not reach the minimum
standard of accuracy demanded by professional image editors.
For this reason, several interactive segmentation algorithms,
mostly based on graph cut segmentation techniques, have
been proposed over the last decade [4]-[16]. Among those,
some can be guided by the users throughout the segmentation
process in order to correct their errors, which often appear
when the contrast between the object that needs to be selected
and the background is extremely low or when the boundary
of the object is highly jagged, with the aim of reaching final
segmentation results that meet the desired degree of accuracy.

While the pipelines of some interactive segmentation meth-
ods integrated into professional softwares like Adobe Photo-
shop have not been published yet, there are many other pub-
lished works that provide valid alternative solutions to those
commercial techniques. It is particularly interesting to observe
that, even though the first published interactive segmentation
methods focused on providing the highest degree of accuracy
while reducing as much as possible the amount of interaction
required to obtain satisfying final segmentation results [15],
more recent works focused on increasing the feedback with the
final users by constantly showing in real time how user inputs
affect the segmentation masks throughout the segmentation



process [12], [16]. In fact, real time feedback is extremely
important in the image and video editing fields as the user
can change the way he/she interacts with the segmentation
algorithm to obtain the best results with the least effort. While
most of the techniques employed in professional image and
video editing are expensive in terms of required computational
resources and can be effectively carried out only on powerful
desktop machines equipped with high quality video resources,
the proliferation of mobile devices integrating high quality
cameras deeply increased the interest of the users to edit the
acquired media contents directly on their mobile devices. This
is proved by the constantly increasing number of image and
video editing applications available in most of the mobile
application stores. In the mobile environment, the expected
minimum standard of accuracy for figure-ground segmentation
is usually far below the requirements of professional editing;
nonetheless, even the simpler and less effective currently avail-
able interactive segmentation algorithms cannot be efficiently
run on mobile platforms as they usually require multiple
executions of expensive energy based graph cut techniques
throughout the segmentation process of a single image.

In this work we propose a novel method for interactive
object class segmentation that is specifically designed to be
efficiently executed on common mid-range mobile devices. We
achieve this goal by performing the classic graph based energy
minimization procedure only once during the whole segmen-
tation of the given image. The low quality segmentation mask
generated by this initial step can be subsequently manually
refined using a set of superpixels automatically drawn over the
image of interest. Those superpixels can be selected by the user
to be added or removed from the current segmentation map in
order to modify it by adding regions of the object of interest
that were wrongly classified as background or viceversa. Since
both the graph cut and the superpixel algorithm computed for
the whole processed image are executed just once throughout
the whole segmentation pipeline, the proposed method pro-
vides a useful user experience even when integrated into im-
age editing mobile applications. Moreover, since the adopted
superpixel algorithm can precisely follow object boundaries,
the final degree of accuracy reached by the proposed method
is comparable with those achieved by more sophisticated tech-
niques. The choice of using the superpixel based refinement
step is particularly effective on touch screen devices, where
the user can simply “tap” the superpixels that he/she wants
to add or remove from the current segmentation mask. An
extensive analysis of the proposed method, including many
examples of final segmentation results, are given throughout
the manuscript. As in other interactive segmentation works,
we evaluate the performance of our algorithm in terms of
achieved overall accuracy over the number of interactions
between the user and the algorithm itself. The source code
for both the desktop and the mobile implementations will be
available online (http.//artelab.dista.uninsubria.it/).
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Fig. 2. Different examples of segmentation masks corrected with the use of
the proposed method. For each row, from left to right: (a) the initial user drawn
bounding box surrounding the object of interest within the processed image;
(b) the resulting GrabCut segmentation mask; (c) the grid of superpixels
and the initial GrabCut segmentation mask superimposed over the processed
image; (d) “tapped” superpixels removed from the initial segmentation mask
after the interactive refinement phase; (e) the final segmentation result.

A. Related work

According to the categorization of [12], works on interactive
segmentation can be subdivided into: scribble-based, painting-
based and boundary-based selection techniques.

In scribble-based selection approaches [4]-[9] the user is
required to either draw a set of initial scribbles over foreground
and background or to provide a bounding box that surrounds
the object of interest within the processed image. These initial
user-provided information enable the segmentation algorithm
to infer some local color models or other characteristic features
that are used to assign each pixel in the image to either
foreground or background. Most of these scribble-based meth-
ods exploit the graph-cut algorithm [17] to cast the task of
assigning a label to each pixel to the problem of finding a cut
over a finite graph that minimizes a specific energy function.
Due to its popularity, graph-cut has been improved over the
years: i.e. GrabCut [15] is an iterative variant of graph-cut that
obtains excellent segmentation results with a limited amount
of interaction with the user; other works proposed different
energy functions [1] or alternative and more effective ways
of computing the weights of the graph built from the initial
image [18]-[20].

Even though scribble-based techniques are widely used in
the field of interactive segmentation, they are not popular in
image editing; this is mainly due to the lack of feedback that



those techniques usually provide. In fact, taking a look at the
“quick selection” tool integrated into Adobe Photoshop we
observe that, while the user is painting the object of interest,
the system interactively shows the evolution of the segmen-
tation mask; this real time feedback greatly helps the user
in obtaining better final results with the least effort. Different
painting-based selection works have been published [12]-[14],
among those, the recent method of [12] is able to obtain
excellent results and provides the user almost instant feedbacks
over the evolution of the segmentation process.

Finally, even though boundary-based selection techniques
are worth mentioning [10], [11], they are no longer into use
as they require the user to manually trace the boundary of
the object of interest; this is a tedious task that is prone to
errors when the object that needs to be segmented resides on a
complex background, has a complex shape, multiple boundary
components, an highly jagged boundary, etc.

The proposed work falls into the scribble-based selection
techniques category as it uses GrabCut to provide the first
raw segmentation of the object of interest. However, we
augment the interaction with the user by superimposing over
the processed image both the segmentation mask generated
by GrabCut and the set of SLIC [21] superpixels computed
over the image itself. The user can “tap” those superpixels
to decide whether they should be added or removed from the
initial segmentation mask; this is similar but opposite to [16],
where the interactive segmentation process directly starts from
superpixels.
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Fig. 3. Positive and negative examples of segmentation masks produced
by the proposed method for some images from VOC2012 [22]. The width of
each image is equal to 500 pixels. The choice of using n = 8, leads to nearly
perfect results for the images in the first 3 rows but produces low quality
segmentations for the remaining ones. The errors committed in these last
examples can be corrected using the proposed zooming feature, as described
in Sec. III.

II. TECHNICAL BACKGROUND

In this section we briefly describe the two algorithms
that represent the core of our object segmentation method:
the GrabCut segmentation algorithm and the Simple Linear
Iterative Clustering (SLIC) method.

A. GrabCut

GrabCut [15] is an efficient, interactive tool that uses
graph cuts to perform foreground segmentation. Briefly, the
algorithm works as follows: (i) initially, in order to create
foreground and background regions, a user draws a rectangle
(or lasso) surrounding the foreground, everything outside this
rectangle will be consider as background, (ii) the algorithm
does an initial labeling depending on this information, every
pixel labeled in this phase is considered as hard-labeled,
meaning that it cannot change its label during throughout the
whole segmentation process.

A Gaussian Mixture Model (GMM) [23] is used to model
the foreground and background regions; GMM learns and
forms the new pixel distribution based on the initial label-
ing. In other words, all the pixels are labeled as probable
background or probable foreground depending on their color
proximity with the hard-labeled pixels.

To obtain the final segmentation mask, a graph is built from
the pixel color distribution; nodes in the graph are associated
to pixels in the image. In addition, two special nodes are added
to the graph: the source and the sink; every pixel labeled
as belonging to the foreground region is connected to the
source node, while every background pixel is connected to
the sink node. The color difference between neighbor pixels
in the original image is used to determine the weights between
the nodes representing those pixels in the graph; if there is a
large difference in pixel color between two pixels, then a small
weight is assigned. On the other hand, the weights between
nodes and both the source and the sink are determined from
the initial user drawn rectangle and denotes the probability of a
pixel belonging to the foreground and background respectively.

A min-cut/max-flow [24] algorithm is used to segment the
graph by determining the minimum cost cut of the graph
that separates the source and sink nodes. The cost of a cut
is defined as the sum of the weights of all the connections
between the nodes that are separated in the cut operations.
After the cut, two regions remain: the foreground region, that
consists of all the pixels connected to the source node; and
the background region, formed by all the nodes connected to
the sink nodes.

B. Simple Linear Iterative Clustering

Simple Linear Iterative Clustering (SLIC) [21] is a simple
and efficient algorithm to decompose an image into visually
homogeneous regions called superpixels.

Briefly, SLIC exploits k-means [25] to generate superpixels
using a combined 5-dimensional color and image plane space.
Hence, each pixel is represented in the 5-dimensional labzy
space, taking into account both its color in the CIE LAB space
[l, a,b] and its position [z, y] in the image. The labxy space is
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Fig. 4. Comparison between computational times required to complete the
execution of GrabCut and SLIC while varying the size of the input image.
The number of superpixels for the smallest dimension of the processed image
was set to 10. In the mobile implementation, to provide real time feedback to
the user, the image needs to be rescaled before being processed by GrabCut
and SLIC.

finally exploited to generate superpixels by clustering pixels
on the basis of their color similarities and proximity values
within the plane itself.

In its default configuration, SLIC has one parameter, k,
that represents the number of desired superpixels. At its first
step, the clustering procedure defines k initial centroids as
Ci = [liyai,bi, x4, y;], © € [1,k], sampled on a regular grid.
The distance between the centroids in the grid is defined as
S = \/g, where NV is the number of pixels in the processed
image. Defining S as such is mandatory in order to produce
equally sized superpixels over the whole image. Since the
Euclidean distance in labxy space will cause inconsistencies
in clustering, a distance measure D that considers superpixels
size is introduced; it is defined as follows:

dc = \/(lj — 11)2 + (aj — ai)2 + (bj - bz)2 (1)
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where Eq. 1 and 2 represent the distances in the color space
d. and in the image spatial space d respectively. The combi-
nation of the 2 distances into a single measure is reported
in Eq. 3, where the 2 proximities are normalized by their
maximum values: N, for the color space and N, for the spatial
distance. The final formula for the distance D, shown in Eq. 4,
is obtained by fixing the maximum spatial distance equals to

the sampling interval Ny = S = \/% and by assigning a

constant m to the maximum color distance N.. In the CIE
LAB color space, m can vary in the range [1,40]. To reduce
the chance of centering a superpixel on an edge, the k cluster
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Fig. 5. Time required by SLIC to compute the superpixels for a given input
image while varying S. Note that the algorithm becomes slower as the size of
the superpixels increases; for this reason, in order for the proposed to provide
a real time feedback on mobile devices, high values must be given to S. As
explained in Sec. III, to obtain optimal segmentation results, the superpixel
size may be decreased for highly textured regions of the object of interest.

centers are moved to the lowest gradient position in a 3 X 3
neighborhood.

For each centroid C;, the clustering algorithm searches for
similar pixels in a region 25 x 25 around it. This is due to
the fact that the spatial extend of any cluster is approximately
S x S. This approach is the key of the efficiency of SLIC,
as it reduces superpixel search regions and makes SLIC’s
complexity independent from the number of superpixels. Each
pixel in the image is associated to the nearest cluster center
whose search area overlaps it. When all the pixels belongs
to the nearest cluster, a new center is computed as the mean
of the [labzy] vector of all the pixels assigned to the cluster.
A residual error E' between the new cluster center position
and the previous center position is computed using L2 norm.
These steps are repeated until the error F is under a defined
threshold that represents the error convergence.

III. PROPOSED METHOD

In the proposed method, as in most of the interactive image
segmentation algorithms proposed in literature, a user first
selects the object of interest to be extracted from the processed
image either by drawing strokes on the foreground and/or
background or by defining a rectangle that surrounds the object
of interest itself within the given image. This user-provided
information is then exploited by the segmentation algorithm
to produce an initial segmentation mask for the processed
image. In some interactive methods, the latest can be manually
edited by the user to correct possible mistakes; in our work,
this last phase is carried out using the superpixels generated
by SLIC as buttons that can be interactively turned “on” or
“off” in order to add or remove corresponding areas of the
processed image that were wrongly added or omitted from
the initial segmentation mask. To the best of our knowledge,
there are no other works in literature that propose SLIC [21] as
a tool to correct the initial segmentation errors; this seemingly
simple approach becomes very useful on touch screen devices
because, with just a few taps, the user can correct almost every
initial error.



The interactive image segmentation algorithm proposed in
this work is GrabCut [15]. To obtain an initial segmentation
of the object of interest, users are required to draw a rectangle
R using their fingers on the screen of its mobile device. The
information provided by the rectangle is exploited by GrabCut
as described in Sec. II to determine the color distributions
of foreground and background regions to provide an initial
“raw” segmentation of the object of interest. This step can
be performed multiple times and the resulting segmentation
is updated in real time on the device; this enables the user to
obtain an initial mask that is fairly correct and avoids excessive
strain during the subsequent refinement phase.

Once the initial GrabCut segmentation mask satisfies the
user, he/she can correct its errors using SLIC superpixels as
areas to be manually marked as either belonging to foreground
or background. In this phase, the grid of superpixels is
superimposed, together with the initial segmentation map,
over the processed image; this enables the user to see in
real time how his actions are affecting the final segmentation
result. In Fig. 2, we provide some examples of the results
obtained using GrabCut and the subsequent manual SLIC-
based refinement phase; it is important to note that in all
those examples we have always used the same size for SLIC’s
superpixels. Provided that the size of the images in the first
4 lines is equal to 200 x 160 and the size of the images in
the last 2 lines is equal to 320 x 240, we observe that, in
general, the size of the processed image deeply affects the
maximum number of SLIC superpixels that can be defined
over the image itself. When the number of superpixels is
extremely high, the refinement phase generates high quality
segmentation results; however, considering that our method is
designed to be used on mobile devices equipped with small
screens, having a high number of superpixels can sensibly
increase the complexity of the refinement phase from a user
point of view. To better highlight this concept, in Fig. 6
we provide 4 different examples of potential segmentation
masks obtained using proposed method for an image from
the Weizmann Horses dataset [26], while varying the size of
SLIC’s superpixels for the same initial segmentation mask
generated by GrabCut for a given user drawn rectangle. In
details, the first row shows the initial GrabCut segmentation
phase, while the remaining ones show different results of the
manual refinement phase; all the examples were refined by the
same operator. It is clear that small superpixels lead to highly
precise refinements of the initial segmentation masks but also
increase the time required for the operator the fix the initial
errors as there are large number of superpixels that need to
be manually “tapped”; on the other hand, large superpixels
lead to bad refinements that often worsen the initial results
produced by GrabCut.

From these previous considerations, it becomes obvious
that is mandatory to define a set of rules to automatically
determine for every processed image the size of superpixels
that will provide the best compromise between complexity and
accuracy of the refinement phase. In the proposed method, the
size S of SLIC superpixels is automatically computed on the

TABLE I
COMPARISON BETWEEN OVERALL SEGMENTATION ACCURACIES
ACHIEVED BY THE INITIAL GRABCUT SEGMENTATION AND THE
SUPERPIXEL-BASED REFINEMENT PHASE. THE THIRD COLUMN DENOTES
THE NUMBER OF SUPERPIXELS THAT HAD TO BE MANUALLY CHANGED BY
THE OPERATOR DURING THE REFINEMENT PHASE.

# of tapped OA (%)
Dataset o superpixels GrabCut | Proposed
Oxford Flower 17 | 50 9 96.24 99.78
Weizmann Horses 9 9 93.71 98.77
Drezzy 8 16 91.79 98.64

basis of the size of the initial user drawn rectangle R. As
reported in Sec. IV, we found that the optimal value for S
can be computed as follows:

§ = Bomin )

n

where R,,;, denotes the smallest dimension of R and n is the
number of superpixels in which the dimension R,,;, of the
processed image needs to be splitted.

In order to provide a method that is extremely interactive
and computationally inexpensive, at each tap of the user on
the touch screen only the pixels belonging to the tapped
superpixel are updated and added or removed from the current
segmentation mask. It is important to observe that, whenever
the user is not satisfied by the value of S automatically
computed by the algorithm or wants to obtain a more accurate
segmentation for some parts of the object of interest, it is
possible for him to zoom on a region of the object of interest
to automatically trigger a new computation of the superpixels
over that area using the same initial value of n; this means that
the same number of superpixels defined over the initial pro-
cessed image will be drawn over the zoomed region of interest.
This enables the user to obtain high quality segmentations of
those regions of the object of interest that reside on highly
textured backgrounds, have complex boundary components,
etc. Thanks to this feature the proposed method can obtain
excellent results even when the value of n is fixed to 8.

IV. EXPERIMENTS

The proposed algorithm was tested using 3 different
datasets, each one contains images differing in size, color
and texture profile. In particular, we use: Oxford Flower
17 [27], Weizmann Horses [26] and Drezzy [28]. All the pre-
viously mentioned datasets come with foreground/background
segmentation masks associated with the object of interests
appearing in the images. In the following paragraphs, we
briefly motivate the reasons why we decide to employ those
datasets in our experiments.

Oxford Flower 17: Composed by 17 flower classes with
80 images each. We only consider the subset of 848 images
labeled for segmentation. The objects are always predominant
in the scenes. Poses, illuminations and colors vary among
all the images. More than one object may appear inside the
same image. Since this dataset is composed of high-resolution



images, it becomes useful in identifying whether the computa-
tional complexity of the proposed method is sufficiently low to
provide a good user experience even when processing images
acquired using high quality phones cameras.

Weizmann Horses: This dataset contains 328 side-view
color images of horses that were manually segmented. The
images were randomly collected from the web. Each image
contains at most one foreground object. Even though this
dataset is mainly composed of low-resolution images, it is
particularly relevant for our experiments as the object of
interests appearing in its images are often placed on complex,
highly textured, backgrounds; this helps us in determining
whether the formula of Eq. 5 is appropriate. In fact, horses
usually have thin legs compared to their bodies, as such, it
becomes difficult to obtain good segmentation results when
using an inappropriate size for the superpixels during the
refinement phase.

Drezzy Dataset: This dataset is composed by 2068 im-
ages whose size varies from 200 x 200 to 100 x 100 pixels.
From this dataset we used only the class “Man clothing”
containing 150 images. The images were collected from
the web and each image contains at most one foreground
object. The characteristics of this dataset make problematic
the segmentation with the GrabCut algorithm and then in
many cases the segmentation for these images must be made
integrally with the SLIC. As shown in the evaluation tables,
this dataset is particularly interesting as the contrast between
the object of interests and their respective backgrounds is
extremely low; this causes the initial GrabCut segmentation
phase to completely fail and therefore the final segmentation
masks need to be completely manually defined during the
refinement phase. This enables us to evaluate the performance
of the SLIC-based refinement procedure independently from
the initial segmentation step.

A. Evaluation Metric

We evaluated the effectiveness of the proposed method by
assessing the consistency between the segmentation masks
it generates and the ground truth segmentation masks from
the different previously mentioned datasets using the Overall
Accuracy O A [29] metric. The O A belongs to the category of
pixel wise evaluation measures and describes the proportion
of pixels of each class that are correctly classified out of the
pixels belonging to that class; it is defined as follows:

_ tp+itn
tp+tn+ fp+ fn

(6)

where the terms true positives (¢p), true negatives (in), false
positives (fp), and false negatives (fn) denote whether the
values assigned by the evaluated algorithm to the pixels in the
output segmentation mask correspond to the ones provided in
the ground truth annotations. The higher the value of O A, the
better are the segmentation masks produced by the algorithm
being evaluated.

B. Results and Discussion

In Table I we report the performance achieved by the
proposed method for the 3 previously introduced datasets. The
first column shows the average superpixel size S automatically
selected by the proposed approach using Eq. 5, while the
second column shows the average number of superpixels
that needs to be “tapped” by the user to correct the errors
committed by the initial segmentation phase based on Grab-
Cut. The last two columns compare the OA values obtained
by the initial GrabCut segmentation phase with the ones
obtained after the superpixel-based manual refinement phase.
From the obtained results, it is possible to observe that the
proposed technique outperforms GrabCut on the evaluated
datasets after a low number of manual refinement iterations;
obviously, the number of superpixels that needs to be changed
strictly depends on the magnitude of the errors committed
by GrabCut: the greater the error of the initial phase, the
greater the number of superpixels that needs to be “tapped”
to obtain a satisfying final result. The effectiveness of the
superpixel-based refinement phase is proved by the results
achieved for the Drezzy dataset; in fact, even though the
segmentation masks generated by GrabCut for that dataset are
highly inaccurate, the subsequent manual refinement phase can
produce excellent accuracies.

A further experiment was performed to evaluate the compu-
tational complexity of the proposed algorithm, all tests were
conducted on a standard desktop computer (Intel Core i3,
4GB RAM). The computational complexity of the proposed
algorithm strongly depends on the image size and the size
selected for SLIC’s superpixels. As shown in Fig. 4 and
Fig. 5, the proposed method must be properly configured to
prevent it from becoming too slow. In details, Fig. 4 highlights
the quadratic complexity of the two algorithms we employ
(GrabCut and SLIC) when fixing the number of superpixels for
the shortest dimension of the processed image. Nonetheless,
thanks to both the automatic selection of S' and the possibility
of zooming into particular regions of the processed image
to obtain better segmentations of those areas, the proposed
algorithm can be efficiently implemented and executed on
modern mobile devices and provides a great user experience.

To obtain the curves of Fig. 5 we used a 500 x 642 image
containing a centered foreground object surrounded by a 460 x
602 user drawn rectangle. In this configuration, we applied
GrabCut before SLIC algorithm while varying the value for S
in the following range {2,4,...,100}. This experiment was
repeated varying the scale of the original image by a factor of
0.1 at each run (from 460 x 602 to 100 x 128 pixels). Based
on the results of this experiments, we decided to set n = 8
in order to keep the execution time of SLIC under acceptable
values in every possible situation. As shown in Fig. 3 this
empirical of n leads to optimal results even when processing
extremely complex object of interests even when not using the
zooming feature mentioned in Sec. III.



Fig. 6. Examples of segmentation results produced by the proposed method
while varying the number of superpixels employed in the refinement phase. An
increase in the number of superpixels leads to better results but also increases
the number of elements that needs to be manually “tapped”.

V. CONCLUSION

In this work, we have proposed a novel method for in-
teractive segmentation that makes extensive use of the touch
screen technology integrated in most modern mobile devices
to provide a great user experience while still being able to
produce final segmentation results that are comparable to those
achieved by other more complex state-of-the-art algorithms
proposed in the last decade. We paired an initial GrabCut-
based segmentation phase that starts from the manual selection
of a bounding box surrounding the object of interest within
the processed image with a SLIC-based refinement phase
that enables the user to manually “tap” on those superpixels
that were wrongly added or omitted from the initial GrabCut
segmentation map. We addressed the problem of automatically
determining the size of superpixels that grants the best com-
promise between accuracy of the refinement phase and com-
putational complexity of the proposed pipeline. To overcome
the issues associated with the quadratic computational com-
plexities of the algorithms employed in the proposed pipeline
and obtain an interactive algorithm that provides real time
feedback to the user, we decided to exploit the pinch-to-zoom
functionality integrated in most modern devices to enable the
user to focus his refinement efforts on specific portions of
the object of interest. Even though the proposed method is
very simple and can be easily implemented in just a few
lines of code, it is extremely effective even when compared to
other popular interactive segmentation algorithms. Finally, the
manual superpixel-based refinement phase always improves
the segmentation results of the initial phase, this is not an
obvious consideration since, as proved in our experiments, a
wrong computation of either the size of the superpixels or
a suboptimal choice of the superpixel algorithm to be used
during the refinement phase can worsen the result produced
by GrabCut for difficult objects.
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