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Abstract—Barcode reading mobile applications that identify
products from pictures taken using mobile devices are widely
used by customers to perform online price comparisons or to
access reviews written by others. Most of the currently available
barcode reading approaches focus on decoding degraded bar-
codes and treat the underlying barcode detection task as a side
problem that can be addressed using appropriate object detection
methods. However, the majority of modern mobile devices do not
meet the minimum working requirements of complex general
purpose object detection algorithms and most of the efficient
specifically designed barcode detection algorithms require user
interaction to work properly. In this paper, we present a novel
method for barcode detection in camera captured images based
on a supervised machine learning algorithm that identifies one-
dimensional barcodes in the two-dimensional Hough Transform
space. Our model is angle invariant, requires no user interaction
and can be executed on a modern mobile device. It achieves excel-
lent results for two standard one-dimensional barcode datasets:
WWU Muenster Barcode Database and ArTe-Lab 1D Medium
Barcode Dataset. Moreover, we prove that it is possible to enhance
the overall performance of a state-of-the-art barcode reading
algorithm by combining it with our detection method.

I. INTRODUCTION

In the last few years, online shopping has grown constantly,
and so have the number of customers that buy online using
their smartphones or tablets. Those devices often integrate high
quality cameras; as such, many researchers and companies
focused on solving the problem of identifying products shown
in camera captured images on the basis of their visual fea-
tures [1]. However, the task of recognizing both the brand and
the model of a product in a real world image has yet to be
efficiently solved; this is mostly due to the large number of
issues that need to be addressed when using camera captured
images, such as poor light conditions or occlusions. An easier
way to approach the object identification task in the field
of e-commerce lies in exploiting the barcodes that nowadays
appear on almost every item in the market: since each barcode
univocally identifies a product, it is possible to precisely
recognize an object just by detecting and decoding its bar-
code [2]. While both the detection and the decoding tasks have
already been exhaustively faced for two-dimensional barcodes
(e.g., Quick Read codes) [3]-[5], the same does not hold
for one-dimensional (1D) barcodes, even though Universal
Product Codes (UPC) and European Article Numbers (EAN)
are widely diffused all over the world.

The task of reading 1D barcodes from camera captured
images has been approached in different ways [6]-[12]. Most

of the currently available barcode reading mobile applications
read the gray intensity profile of a line in the processed
image, thus they usually require the user to place the barcode
in a specific position within the camera screen [12]. Some
industrial approaches obtain excellent results using hardware
implementations of their barcode reading softwares [13] but
they usually exploit some prior knowledge related to the
specific domain, e.g., the dimension and the position in which
a barcode may appear inside the processed image. Other works
propose different techniques of decoding 1D barcodes to deal
with camera related issues, such as poor light conditions or
lack of focus [9]-[11].

Overall, most of the works presented in literature mainly
address the barcode decoding phase and treat the underlying
barcode detection task as a side problem. Nonetheless, we
argue that the task of detecting multiple arbitrary rotated
barcodes in real world images is crucial to reduce the amount
of user interaction involved in the subsequent decoding pro-
cess. Moreover, real time angle invariant barcode detection
algorithms may be exploited by automated systems to identify
products without defining placement or ordering constraints.
Obviously, 1D barcodes may be effectively detected by general
purpose object detection methods, such as the one presented by
Lempitsky ez al. [14], however this is not an optimal solution
since most of the interesting applications of barcode reading
algorithms lie in the mobile field and the majority of currently
available mobile devices do not meet the minimum working
requirements of those object detection approaches.

In this paper, we propose an angle invariant method for
barcode detection in camera captured images based on the
properties of the Hough Transform [15]. A properly trained
supervised machine learning model identifies the rotation
angle of every barcode in real world images by analyzing their
Hough Transform spaces and a subsequent phase detects the
bounding boxes surrounding those barcodes. We prove that
our method can obtain excellent results for three different
1D barcode datasets and that it is also effective in detecting
barcodes that are twisted, partially occluded or illegible due to
reflections. The main novelties of our approach are that: (i) it
detects the exact positions and rotation angles of 1D barcodes
without exploiting prior knowledge, thus it does not require
any user interaction, (ii) the bounding boxes identified by our
model can be exploited by a subsequent decoding phase to
efficiently read barcodes without wasting any time searching
for them in the processed image. We publicly release the
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Fig. 1. Examples showing the barcode bounding boxes detected by the proposed method for arbitrary rotated 1D barcodes appearing in camera captured
images; the detected bounding boxes are correct even when the barcodes are twisted, occluded or partially illegible due to reflections.

source code used in our experiments as it can be used by
most of the barcode reading algorithms presented in literature
and we present a new dataset specifically designed to evaluate
the performances of angle invariant 1D barcode detection
methods!'.

II. RELATED WORKS
A. Hough Transform

The classical Hough Transform [15] is a feature extraction
technique commonly used in image processing and computer
vision for the detection of regular shapes such as lines, circles
or ellipses. The Hough Transform for lines detection adopts
a voting procedure to identify the set of linear shapes L in a
given image I. The normal form equation of a generic line
l € L in I can be defined as follows:

p = xcost + ysinb (D

where p > 0 is the distance of [ from the origin of I and
6 € [0,2m) is the angle of [ with the normal. Let the two-
dimensional Hough Transform space H be the (p,6) plane,
for an arbitrary point (z;,y;) € I, Eq. (1) corresponds to a
sinusoid in H. If two points (zg,yo), (z1,y1) € I belong to
the same line [, their corresponding sinusoids intersect in a
point (p;, 0;) € H. The same holds true for all the points of .
Note that the coordinates of the point (p;,6;) € H correspond
to the main parameters of [, therefore it is possible to detect the
set of linear shapes L by identifying the points of intersection
in the Hough Transform space H of I.

In a discrete implementation, the Hough Transform algo-
rithm uses a two-dimensional array A, called accumulator, to
represent the plane H. In its first step, the algorithm executes
an edge detection algorithm on I. Let I. be the edge map
computed for I, for each pixel p € I. the Hough Transform
algorithm determines if p corresponds to an edge in [; if so, for
every line [, (in the discrete space defined by A) that may pass
through p, the algorithm increases the value of the element in
A that corresponds to the main parameters of [,,. Finally, the
linear shapes in I are identified by applying a local threshold
operator to A to detect its peaks.

B. Barcode detection

The barcode detection task consists in locating the barcodes
that appear in a given image; the output of a barcode detection
algorithm should consist of a set of bounding boxes surround-
ing those barcodes.

Uhttp://artelab.dista.uninsubria.it/download/

This task has been faced using many different techniques,
for example: (i) in [12], [16] scan lines are drawn over
the image to detect the exact position of a barcode, (ii)
Basaran et al. [17] rely on the properties of the Canny Edge
Detector [18] to identify edges corresponding to barcodes, (iii)
Gallo and Manduchi [9] assume that the regions in the image
characterized by weak horizontal gradients and strong vertical
gradients correspond to barcodes. In order for the cited models
to operate effectively, the barcodes that appear in the processed
images need to satisfy a set of constraints, e.g., none of the
cited models can detect arbitrary rotated barcodes.

C. Barcode decoding

The barcode decoding task consists in exploiting the infor-
mation provided by a barcode detection algorithm to read the
barcodes that appear in a given image.

As for barcode detection, the decoding task has been
faced in literature in many different ways: (i) Gallo and
Manduchi [9] exploit deformable templates to efficiently read
extremely blurred barcodes, (ii) in [8], [12], [16] the authors
adopt different thresholding techniques to decode the bars of
1D barcodes, (iii) Zamberletti et al. [10] use a supervised
neural network to improve the performance of the Zebra
Crossing (ZXing) [19] algorithm, (iv) Muiiiz et al. [20] decode
1D barcodes by exploiting the accumulator array of the Hough
Transform algorithm. Based on the results provided by the
authors, the algorithm proposed by Gallo and Manduchi [9]
proves to be significantly more robust than the others when
applied to camera captured images. The methods presented
in [9], [10], [19] are able to read 1D barcodes efficiently on
common mobile devices.

III. PROPOSED MODEL

A detailed description of the proposed method is given in
the following paragraphs. Given an image I, we apply the
Canny Edge Detector [18] to I to obtain its edge map I.
Note that this step can be computed efficiently even on a
mobile device, as proved by many available mobile implemen-
tations. Once the edge map has been determined, we compute
the Hough Transform of I, in the two-dimensional Hough
Transform space H. Finally, we detect the rotation angle 6 of
the barcodes that appear in I as described in Section III-A
and we determine their bounding boxes by analyzing a neural
generated accumulator matrix as in Section III-B. In Fig. 2
we show the pipeline of our algorithm for an image of the
Rotated Barcode Database presented in Section IV-A.
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Fig. 2. A visual overview of the steps performed by the proposed model to detect the bounding boxes of the barcodes that appear in a given image.

A. Angle detection

Let Ay be the accumulator matrix for the two-dimensional
Hough Space H, a regular grid of cells is superimposed over
Ap; the height and the width of each cell are defined as n
and m respectively. Every cell ¢ of the grid is given as input
to a Multi Layer Perceptron (MLP) [21] neural network that
produces a new cell ¢; having the same size of ¢. Let ¢(4, j) be
the value of the element of ¢ in position (4, j), with 0 < i <n
and 0 < j < m; the value assigned by the MLP network to
its corresponding element c¢;(i, j) is defined as follows:

(i) 1 if ¢(¢,7) denotes a barcode bar in I.
c(i,j) = .
th 0 otherwise.

where an element c(i,j) denotes a barcode bar in I if the
line defined by Eq. (1) for (p(; ;) 0c(i,)) corresponds to a
barcode bar in I.

As stated by Eq. (2), the goal of the neural network is
to assign an high intensity value to an element of ¢; if it
corresponds to an element of ¢ that denotes a barcode bar in
the original image /. We train the neural model using a set
of training patterns generated from the test set of the given
barcode dataset. Let I; be a training image in the current test
set, a training pattern is composed of a pair (in, out) in which:
(1) n is the vector representation of a cell extracted from the
accumulator in the two-dimensional Hough Transform space
H of I, (ii) out is the vector representation of a cell in which
the elements of ¢n that denote barcode bars in I; are assigned 1
as intensity value, the others are assigned 0. Once all the cells
defined for Ay have been processed by the neural model, we
combine them together to generate a new matrix Ay in which
the elements having high intensity values represent potential
barcode bars.

The main feature of a 1D barcode is that its bars are parallel;
for this reason, we define the likelihood [, of a barcode
appearing in [ rotated by the angle associated with a row
r in Ay as the sum of all the elements of r. This process is
repeated for all the rows of Ay to obtain an histogram h; in
which each bin b, represents the likelihood that the elements
of the row r denote the bars of a barcode in I. An example
of such histogram is presented in Fig. 2. Let b, be a bin in
h; and maxy, be the maximum value in A, if b, = maxp,
then we assume that some of the elements of r denote the bars
of a barcode in I. Let 6, be the rotation angle specified by
r, without further operations we could perform a set of scan

2)

lines [12], [16] rotated by 6, to decode the barcode associated
with r. This is an expensive operation since those scan lines
should be performed over all the lines of I whose rotation
angle is 6,.. However, it is possible to reduce the number of
scan lines required to decode the barcode by identifying its
bounding box as described in Section III-B.

B. Bounding box detection

Given Aj, we obtain the rotation angle 6, of every barcode
b in I as described in Section III-A. After that, we determine
the set S of all the segments in I by applying the same
technique of Matasyz et al. [22] to Ay. For each barcode
b, we define S, C S as the set of segments whose rotation
angles differ by at most +£5° from 6, and we create a binary
image Ig, in which the intensity value assigned to the pixels of
the segments of Sy, is 1, the others are assigned 0; the image
Ig, is then rotated so that the majority of its segments are
parallel to the vertical. Similarly to Section III-A, we define
two histograms hs, and h§, that describe the intensity profile
of the rows and the columns of Ig, respectively, as shown
in Fig. 2. More specifically, each bin of those histograms is
computed as the sum of the elements of a row/column in
Is,. Finally, we apply a smoothing filter to each histogram to
remove low value bins corresponding to isolated non-barcode
segments and we determine the bounding box of the barcode
b as the intersection area between the rows and the columns
associated with the remaining non-zero bins in hg, and hg,
respectively. All the operations previously described can be
performed in parallel for each detected barcode.

C. Discussion

The computational complexity of the proposed model
strictly depends on the size of the accumulator Ap. Note
that, due to the aspect ratio of a 1D barcode, it is possible
to successfully decode a barcode using a scan line if the
rotation angle of the scan line differs by at most +30° from
the one of the barcode [9]. This feature enable us to obtain
good results even when a single row in Ag is associated with
multiple consecutive rotation angles. The neural network is
also affected by the parameters n and m; in fact, as proved
in Section IV-C, the capability of the MLP network to detect
twisted barcodes depends on those two parameters. This is due
to the fact that the bars of a twisted barcode (e.g., a barcode
printed on an irregular object) are not parallel, therefore some
of the points generated in Ay for such bars lie on different
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Fig. 3. Overall angle detection accuracy achieved by our model for the three 1D barcode datasets presented in Section IV-A while varying the cell size.

subsequent rows. If we increase n, each cell provided as
input to the MLP network covers multiple subsequent rows
of Ay and this enables the neural model to successfully
detect multiple rows patterns. The computational complexity
of the bounding box detection phase depends on the size of
the original image I; in our experiments we always rescale
the input image to a 640x480 pixels resolution without losing
overall detection accuracy.

IV. EXPERIMENTS
A. Datasets

In this section we present the datasets used to measure
the performance of the proposed model. We employ two
standard 1D barcode datasets: ArTe-Lab 1D Medium Barcode
Dataset [10] and WWU Muenster Barcode Database [12].
We also build an additional publicly available dataset, called
Rotated Barcode Database, specifically designed to evaluate
the performances of angle invariant 1D barcode detection
algorithms. Since our method involves a supervised machine
learning algorithm, we split each dataset into a training and a
test sets. In details, for each dataset, we randomly select 66%
of its images as training set and the remaining 33% as test set.
In order to evaluate the accuracy of the bounding box detection
phase, described in Section III-C, we define the figure-ground
segmentation masks for all the images of the previously cited
datasets.

ArTe-Lab 1D Medium Barcode Dataset. It consists of 215
1D barcode images acquired using a Nokia 5800 mobile
phone. This dataset is not specifically designed to evaluate
the performances of angle invariant algorithms; as such, the
barcodes that appear in the images are rotated by at most £30°
from the vertical. Each image contains at most one non-blurred
EAN barcode. In our experiments, we do not employ the
extended version of the dataset because the proposed method
is not specifically designed to deal with unfocused images.

WWU Muenster Barcode Database. It consists of 1055 1D
barcode images acquired using a Nokia N95 mobile phone.
As for the ArTe-Lab 1D Medium Barcode Dataset, this dataset
has not been specifically designed for angle invariant detection
algorithms, for this reason most of the barcodes that appear
in the images are not rotated from the vertical. Each image
contains at most one non-blurred EAN or UPC-A barcode.

Rotated Barcode Database. It consists of 368 1D barcode
images acquired using multiple smartphones; all the images

are scaled to a 640x480 pixels resolution. This dataset is
specifically designed to evaluate the performances of angle
invariant barcode detection algorithms; as such, the barcodes
shown in the images are rotated by arbitrary angles. Each im-
age may contain multiple EAN and UPC barcodes. Moreover,
the barcodes may appear twisted, illegible due to reflections
or partially occluded. The dataset is publicly available for
download and use.

B. Evaluation metrics

We measure the performances of the two main phases
of the proposed model using the overall angle detection
accuracy for the angle detection phase of Section III-A and
the overall bounding box detection accuracy for the bounding
box detection phase of Section III-C.

Overall angle detection accuracy. Given a dataset D, the
overall angle detection accuracy achieved by the proposed
model for D is computed as follows:

0 _ tp
Pt ot fp
where tp is the number of barcode rotation angles successfully
detected in the test set of D, tp + fn is the total number of
1D barcodes that appear in the images of the test set of D and
fp is the number of objects wrongly identified by the MLP
network as barcodes. The rotation angle detected for a barcode
b is considered correct if it differs by at most +10° from the
true rotation angle 6.

OA 3

Overall bounding box detection accuracy. Given a dataset
D, the overall bounding box detection accuracy QA is
calculated by redefining ¢p in Eq. (3) as the number of barcode
bounding boxes correctly detected. Let bb, be the bounding
box for a barcode b, a detected bounding box d;, is considered

:e bbpNdy
correct for b if BhrUds >0.5.

C. Results

In this section we discuss the results obtained by the model
presented in Section III for the three datasets of Section IV-A.
In all the experiments we adopt an MLP network composed
by a single hidden layer whose size is equal to n - m. We
extract 150 background and 50 foreground training patterns
from each image of the given test set and we exploit them
to train the neural model using the resilient backpropagation
algorithm. We define the accumulator Ay as a matrix with
180 rows and v/2 - maz(h,w) columns, where h and w are
the height and the width of I respectively.



TABLE I
OVERALL BOUNDING BOX DETECTION ACCURACY.

Dataset H O Abb
ArTe-Lab 1D Dataset [10] 0.86
Muenster BarcodeDB [12] 0.83
Rotated Barcode Database 0.84

TABLE I
OVERALL BARCODE READING ACCURACY WHILE VARYING THE
DETECTION METHOD.

Barcode Reading Algorithm
Dataset - -
ZXing [19] | Our U ZXing [19]
ArTe-Lab 1D Dataset [10] 0.82 0.85
Muenster BarcodeDB [12] 0.73 0.81
Rotated Barcode Database 0.61 0.82

In our first experiment we analyze the angle detection phase
described in Section III-A; the results we obtain are shown in
Fig. 3. It is possible to observe that, as stated in Section III-C,
the parameters n and m affect the overall angle detection
accuracy. The best value for m is 3; lower values do not
allow the MLP network to detect twisted barcodes while higher
values introduce too much noise in the patterns processed
by the MLP network. Overall, we achieve excellent angle
detection performances: if we set n = 3 and m = 61, we
obtain a 100% OA? for the simple ArTe-Lab 1D Medium
Barcode Dataset and an average of 95.5% OA? for the other
two datasets. In this configuration, the time required to process
an image is roughly 200 ms on a mobile device. Next, we
evaluate the overall bounding box detection accuracy obtained
by the bounding box detection phase for the same three
datasets; the results are presented in Table I. Unfortunately, we
cannot provide any comparison with other barcode detection
algorithms as they do not usually detect region of interests
within the processed images; in our experience, the only
method that performs a similar detection process is the one
in [9], however we cannot test it because its source code is
not currently available. The bounding box detection accuracies
we obtain are close to 85% O A for all the datasets analyzed,
this is a good result considering the fact that our method does
not impose constraints and requires no user interaction. The
completion time of the bounding box detection phase is 70
ms per image. We perform a final experiment to prove that it
is possible to improve the performance of an existing barcode
reading algorithm by replacing its detection algorithm with our
method. We chose the ZXing [19] algorithm because its source
code is available for download; we evaluate the perfomances
of both the original algorithm and our modified version using
the same metric of Zamberletti et al. [10]. From the results
presented in Table II, we observe that the algorithm obtained
by combining ZXing with our detection method achieves better
overall perfomance than the original algorithm for all the three
datasets, especially for our Rotated Barcode Database.

V. CONCLUSION

We have presented a method for detecting one-dimensional
barcodes in camera captured images that is angle invariant and
requires no user interaction. We proved the effectivness of the
proposed model using three EAN/UPC datasets. The obtained
results show that our method is able to precisely detect both
the rotation angles and the bounding boxes of one-dimensional
barcodes even when such barcodes are partially occluded,
twisted or illegible due to reflections. The time required by
our approach to process an entire image is roughly 270 ms on
a modern mobile device; this is an excellent results because, as
shown in our experiments, it is possible to obtain a robust one-
dimensional barcode reading algorithm simply by combining
our approach with a fast scan line decoding algorithm that
processes only the detected bounding boxes.
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