LEARNING OBJECT DETECTION USING MULTIPLE NEURAL NETWORKS

Ignazio Gallo, Angelo Nodari
University of Insubria, Dipartimento di Informatica e Comunicazione, Varese Italy
{ignazio.gallo,angelo.nodari}@uninsubria.it

Keywords: object detection, neural networks, multiple neural networks

Abstract: Multiple neural network systems have become popular techniques for tackling complex tasks, often giving improved performance compared to a single network. In this study we propose an innovative detection algorithm in image analysis using a multiple neural network approach where many neural networks are jointly used to solve the object detection problem. We use a group of networks configured with different parameters and features, then combines them in order to obtain new networks. The topology of the set of neural networks is statically configured as a tree where the root node produces in output the detection map. This work represents a preliminary study through which we want to move from detection to segmentation and recognition of objects of interest. We have compared our model with other detection algorithms using a standard dataset and the results are encouraging. The results highlight the advantages and problems that will guide the evolution of the proposed model.

1 INTRODUCTION

Object detection is an important task in computer vision, it is a critical part in many applications such as content based image retrieval, understanding of a scene, automatic annotations, etc. However it is still an open problem due to the heterogeneity of some classes of objects to be detect and the complexity of the background in some images. Many works available in literature work well only on certain categories of images and fall on others. In this paper we propose a method capable of maintaining the same accuracy on different types of data.

Usually the object of interest in a digital image is detected finding the bounding box which surround the object. The strength of this work consist in the detection of the object in a cognitive manner, locating the object through the use of a segmentation process. Detection and segmentation of an object in a single step is certainly a more complex and difficult operation instead of detect an object and perform a segmentation in a second step. In this work we use only the detection phase of our algorithm in order to compare the results with other object detection techniques despite the algorithm presented performs also a segmentation of the object of interest.

In literature there are many object detection approaches which can be classified as bag of words model (Csurka et al., 2004; Fei-fei, 2005; Schmid, 2006), parts and structure models (Fischler and Elschlager, 1973; Fergus et al., 2003; Crandall et al., 2005), discriminative methods (Bouchard and Triggs, 2005; Zhu and Yuille, 2006) and combined segmentation and recognition methods (Leibe and Schiele, 2003; Todorovic and Ahuja, 2006). In this work, choosing to work with neural networks that combine the segmentation and recognition, we can classify our algorithm in the latter object recognition approach.

The model proposed in this study, like other works which propose biologically inspired systems (Riesenhuber and Poggio, 1999; Serre et al., 2005), is inspired by the human visual perception system. In fact, analyzing how the visual system works, a neuron n of the visual cortex receives a bottom-up signal X from the retina (lower-level-input) and a signal M from an object-model-concept m (top-down priming signal). The neuron n is activated if both signals are strong enough. The visual perception uses many
levels in the transition from the retina to object perception. By analogy, we propose a Multi-net system (Sharkey, 1999) based on a tree-structure where leaf nodes represent the bottom-up signal extracted from the input image. The intermediate levels nodes represent the knowledge of the previous experience, going in the direction of the root node.

In this paper, unlike for Perceptron Decision Tree (Utgoff, 1988) which has a similar structure to the method presented here, the prediction of a trained network can become an input feature of a second neural model. Starting from the root node of a tree of neural networks, the training process is propagated to the leaf nodes of the tree (networks that depend only by simple features). During the detection phase, each node gives its generated map to its parent node until the map produced by the root node. Each node reads its information through a sliding window that receives all the input features. Neural networks are trained on the same set of training images and the prediction of each of them is combined in order to improve their generalization attitude. The peculiarity of the proposed model is that each level of the tree is guided by the same rules: for each node the perception of simple and particular features or the knowledge of more abstract and complex concepts is performed by the same mechanism described above, but using a different node configuration.

2 THE PROPOSED METHOD

In this section we present our model called Multi-Net for Object Detection (MNOD). The MNOD model consists of a tree of single networks $C_p^n(F)$, where n is the node identifier, P corresponds to all the parameters from which the network configuration depends and F represents the set of input features.

Each neural network C^n uses a particular set of parameters P such as training epochs, number of neurons in the input layer, number of neurons in the hidden layer, etc. The set of features F can be directly extracted from the input images (such as edges, color, etc...) or they can be the result of other neural models C_p^n previously trained on the same training set. Figure 1 shows an example of a generic MNOD.

Each node C_p^n produces in output a map where the pixels containing higher values identify the objects of interest. As said in (Sharkey, 1999) it is possible to diversify a node C_p^n changing network initialization conditions, topologies, training algorithms and training data. Here, we investigate only in changing the network topology considering the set of parameters P. The main parameters associated which each node n are $P_n = \{I_S, W_S\}$, where I_S represents the re-sized image dimension and W_S is the sliding window dimension. The structure of a single node used in this work, is showed in Figure 2. It consist in a Multi-Layer Perceptron (MLP) which receives the input values from a sliding window for each feature configured. We create an image for each feature and all these images are re-sized to the pre-defined dimension. By using different combinations of these two parameters it is possible to construct models specialized in the recognition of a specific element of interest in a particular scale. This concept is typical of Multi-net systems which use a “modular combination” of the neural networks (Sharkey, 1999). In this case the main problem is divided into sub-tasks and then it is possible to obtain a solution by combining different modules, or neural networks.

During the training phase all the input and output images of a node n are re-sized to the same size $I_S \in P_n$ and from all the gray values in the sliding window we construct the input and desired output (as showed in Figure 2).

A single node in the proposed model can be trained or used directly in generalization unless it receives in input the output of another neural model (see for example the nodes $C_p^1 \in C_p^3$ in the Figure 1). Otherwise (see, for example nodes $C_p^1 \in C_p^4$ in the Figure 1) we first need to train and then to use the networks of child nodes. For more details on the algorithms used for training the model see the Algorithm 1 and the Figure 2, while for generalization see Algorithm 2 and Figure 2.

3 EXPERIMENTS

In this study, two types of experiments were conducted to analyze different aspects of the proposed model. We first analyzed the main parameters of the MNOD models and its generalization attitude. Finally, we tried to compare our model with the results
The two variables of interest to measure the accuracy of an object detection system, are the number of correct detection that we want to maximize, and the number of false detection that we want to minimize. When an object detection system is really used, we are interested to know how many objects have been identified, and how often the items found are false. This compromise can be captured by studying the Precision-Recall curve (or PR-curves), where

\[P = \frac{\text{correct}}{\text{actual}} \quad R = \frac{\text{correct}}{\text{possible}} \]

stating that correct is the number of objects correctly detected by the system, actual is the total number of objects recognized by the system, possible is the total number of objects we expected from system. A Precision equals to 1.0 means that each detected object is correct, but tells us nothing about the objects that have not been found. A high Precision value ensures that there are few false positives. A Recall measure equals to 1.0 tells us that each object was correctly identified, but tells us nothing about how many other items were incorrectly matched. A measure that usually is used to summarize Precision and Recall values is the F-measure \(F = 1/(\lambda P + (1 - \lambda)R) \) setting \(\lambda = 0.5 \). Average Precision (AP) is another measure that approximates the area under the PR-curve and that, for its readability, is usually used to compare different object detection algorithms. For more details on these measures and how an object is considered correctly detected see (Everingham et al., 2005).

3.1 Analysis of key parameters

In this experiment we analyzed the behavior of the MNOD model varying its key parameters. In particular, we analyzed the influence of the image size \(I_s \) and the sliding window size \(W_y \) parameters, applied to nodes (or networks) configured with different features.

The dataset used here contains real images of cars viewed from different viewpoint: side, rear, top, front, partial (see some examples in Figure 4). In particular,
we used the dataset called **TU-Graz cars** contained in VOC2005 (Everingham et al., 2005).

For this experiment we used a limited set of features that highlight some information on color and high frequencies available in the images. In particular, we used the features **Saturation (Sa)**, **Hue (Hu)**, **Sobel (So)** and **Horizontal Edges (EH)**.

The MNOD topology is shown in figure 3 and was fixed before starting the training phase. Nodes were configured randomly by tying the window size \(W_5 < I_S\) and trying some combinations of parameters \((W_5, I_S)\) leading to an increase in detection accuracy. The size of the sliding window ranges from \(1 \times 1\) to \(9 \times 9\), while the images were scaled proportionally so that the smaller side is in the range \([3, 24]\).

The plots in Figure 5 show the behavior of the F-measure in the space \((W_5, I_S)\). It is evident that the range \([F_{1\text{min}}, F_{1\text{max}}]\) and the activation area of the F1 measure increases, moving from leaf nodes towards the root node \(C^5\).

Based on the results obtained with this first analysis we chose a configuration for each node of the model shown in Figure 3. Each node \(C^n\) was trained with the following parameters: \(C_{20,6}^{1}(Sa, Hu, So)\), \(C_{20,8}^{1}(Hu)\), \(C_{23,2}^{1}(EH, C^1)\), \(C_{18,7}^{1}(C^3, C^2, EH)\) and \(C_{23,8}^{1}(Hu, C^4)\).

From Table 1, we may observe that each node of the selected configuration, if it receives in input the output of one or more nodes, increases the generalization capability. In fact, the Table 1 shows an increase in P, R and F1, comparing a node with its child nodes. For example, the last row of the table shows the network \(C_{23,8}^{5}(Hu, C^4)\) that takes advantage of the map generated by the network \(C^4\). Table 1: Results obtained using some different random configurations. \(C_n(M_1, M_2, \ldots)\) is a neural network that uses an input size \(x \times x\), a sliding window size \(y \times y\), reading the input values from all the feature \(M_i\).

<table>
<thead>
<tr>
<th>Configuration</th>
<th>P</th>
<th>R</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{20,6}^{1}(Sa, Hu, So))</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>(C_{20,8}^{1}(Hu))</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>(C_{23,2}^{1}(EH, C^1))</td>
<td>0.05</td>
<td>0.10</td>
<td>0.07</td>
</tr>
<tr>
<td>(C_{18,7}^{1}(C^3, C^2, EH))</td>
<td>0.24</td>
<td>0.19</td>
<td>0.21</td>
</tr>
<tr>
<td>(C_{23,8}^{1}(Hu, C^4))</td>
<td>0.33</td>
<td>0.26</td>
<td>0.29</td>
</tr>
</tbody>
</table>

All the nodes in Table 1 were trained using 108 training images while results shown in same table are taken from the test set consisting of 128 never seen images. The train and test sets are the same of the VOC2005 dataset 1. Each network was trained using the learning algorithm Rprop (Resilient Backpropaga-

![Figure 3: A configuration example where each node increases the accuracy measures (see Table 1 for details) using the output of child nodes.](image3)

![Figure 4: Some examples of images belonging to the dataset TU-Graz cars.](image4)

3.2 Comparisons

In (Everingham et al., 2005) several innovative methods for object detection were evaluated on a dataset containing four classes of objects: **motorbikes**, **bicycles**, **people** and **cars**. The training and test sets contain objects having substantial variations in terms of scale, occlusion, and variability within the class. These aspect of the dataset allow to better assess an algorithm and to highlight the benefits and drawbacks of the same algorithm. Another advantage of this dataset is the possibility to compare an algorithm with the whole community that used it.

Our algorithm requires the presence of a GT-Mask for each training image, and not all the four classes...
of objects have that information associated with each training image. For this reason we used only three classes of objects bicycles, people and cars and for each class we use only the training image having a GT-Mask.

The metrics used here are the same as that used in (Everingham et al., 2005): the PR-curve and the Average Precision (AP).

The network showed in Figure 6 represents the structure used in all the three classes of objects. The structure of the model used in this experiment was built with the following rule: we build some of the nodes which receive in input some features and are configured with a small I_S value, the maps generated by these nodes are passed in input to other nodes that increase the I_S value, and so on. In this way we can see a refinement of the segmentation result through every level of the tree towards the root node.

From this experiment we found that the main problem of our algorithm lies in the dataset with large differences of scale. Then, trying to force in input only the area containing the object (see some examples showed in the first row of the Figure 7), we note that the results increase significantly (see MNOD-SI in Table 2). The model so trained and tested was renamed MNOD-SI.

In this work a detailed analysis on the best features for this model has not been done. For this experiment we used a limited set of features that highlight some information on color and high frequencies present in the images. In particular, we used the features Saturation (Sa), Hue (Hu), Brightness (Br), Horizontal Edges (EH), Vertical Edges (EV) and Histogram of Gradient (HoG) configured in different ways. The parameter s in EH_s and EV_s is the scale used on the input image before to compute the feature. The parameters (s, b) in $HoG_{s,b}$ are the scale used on the input image and the block size respectively. The HoG feature, as in (Dalal and Triggs, 2005), reads the input values from a sliding window of histograms (cell block). In this work each histogram is composed by four bins, a cell block is an area of 6×6 pixels and the neural model used, instead of the SVM, is a MLP.

In Table 2 we compare our model with some methods presented in (Everingham et al., 2005), while in Figure 8 the trend of the PR-curve using MNOD-SI is shown for the three classes of objects. The AP measure on the three classes of problems considered was computed using the same configuration showed in Figure 6 and the standard test set called test1 for each class of objects of the VOC 2005 Dataset 1.

It is obvious that we could obtain better results by making a thorough search of the parameters and of the features, as evidenced in the study showed in Figure 5, but we will deal with this issue in a future work. Starting from the results obtained using the model MNOD-SI we are working for a new version able to exploiting the different scales in images of a particular domain. A very interesting result is the fact that the model has a similar behavior on different classes of objects.

![Figure 6: MNOD configuration used for the three categories of objects in the dataset VOC2005. The model displays the maps produced by each node C_P and the features used in input, all related to the input image of the testing set.](image)

![Figure 7: On the first line there are some image examples of the dataset VOC2005. On the second line the maps produced by the trained model and the desired bounding box in green.](image)

<table>
<thead>
<tr>
<th>Method</th>
<th>Bicycles</th>
<th>People</th>
<th>Cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNOD</td>
<td>0.01</td>
<td>0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>MNOD-SI</td>
<td>0.2</td>
<td>0.21</td>
<td>0.42</td>
</tr>
<tr>
<td>Boosted-Histogram</td>
<td>0.37</td>
<td>0.25</td>
<td>0.663</td>
</tr>
<tr>
<td>TU-Darmstadt</td>
<td>-</td>
<td>-</td>
<td>0.489</td>
</tr>
<tr>
<td>Edinburg</td>
<td>0.19</td>
<td>0.002</td>
<td>0.00</td>
</tr>
<tr>
<td>INRIA-Dalal</td>
<td>-</td>
<td>0.01</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Figure 8: The comparison results are taken from (Everingham et al., 2005).
4 CONCLUSIONS

In this paper we described an object detection algorithm based on a multiple networks system. It is composed by a set of neural networks aggregated together to provide a single output result. The model was tested and the results were presented, highlighting the potentialities of our solution. The proposed algorithm can be configured for different classes of object and its nodes may consist of different types of neural learning strategies. This type of algorithm, here mainly used for detection, provides an interesting segmentation result that we intend to exploit in future works.

We got good results on many standard dataset compared to other object detection algorithms. Moreover, the results show that our algorithm is robust to the change of perspective for the same object and at the same time, as it is robust for objects of the same type but different forms in different poses or even articulated and occluded.

The proposed algorithm suffers from some issues related to datasets with conspicuous differences of scale for the objects that we want to detect. Therefore we are working on a different strategy to overcome this problem. Detection results are dependent on network topology and from the selected set of features. Then, we are analyzing new search algorithms able to select the best network configuration.

REFERENCES

