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1. Problem 2. Solution
* To build an ensemble of algorithms to solve figure-ground segmentation problems * The algorithms interact in a tree structure
* To combine any kind of algorithms which comply with a simple interface * The creation of this structure is driven by the maximization of a goodness measure

* To find a strategy to build ensembles that rely on interactions between components
rather than on rejection rules

* Instead of looking for optimal combinations, we randomly select most of the
parameters, this speeds up the building phase and avoid getting stuck in local
minima

Ditferent algorithms commit different errors, so we expect that enhancing algorithms
interactions may help compensate each one errors.

* The building phase is an iterative procedure
* Just by using simple algorithms we obtain state-of-the-art results.
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Iterate until goodness measure stop improving
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performance increases:
* by increasing the size of the ensemble

* by increasing the number of algorithms that are

combined
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