

University of Insubria

Varese, Italy

Sparse unsupervised feature learning for sentiment classification of short documents

Simone Albertini, Alessandro Zamberletti, Ignazio Gallo

simone.albertini@uninsubria.it

http://artelab.dista.uninsubria.it

September 23th, 2013

Introducing the problem

Classification of short texts

Independent comments Phrases from long texts

• Predicting the sentiment polarity

Introducing the problem

- We addressed the problem trying to learn a significative representation of the documents
- No prior information is used:
 - No assumptions about language patterns and idioms
 - No opinion-bearing words dictionaries
- The goal is to learn good features starting from several different representations of the documents in a VSM.

Overview of the solution Learning a vector representation

- Unsupervised procedure
- Training a model used to obtain a sparse vector representation of the documents

Overview of the solution Learning a vector representation

- The documents are represented as vectors
 - Standard Bag of Word approach
 - A dictionary is extracted from the training corpus
 - We tried five differents approaches to compute the scores

Weighting functions

• Binary Term Frequency

$$binary_score(d,t) = \begin{cases} 1 & \text{if } t \in d \\ 0 & \text{otherwise} \end{cases}$$

$$TF \cdot IDF(d,t) = tf(d,t) \cdot \log(\frac{|D|}{df(D,t)})$$

Where:

- $\cdot d$ is a document
- \cdot *t* is a term from the dictionary
- \cdot D is the set of all document

PATHOS 2013, Darmstadt

Weighting functions

• Specific against Generic and One against All

$$score(t, sc, gc) = 1 - \frac{1}{\log_2(2 + \frac{F_{t,sc} \cdot D_{t,sc}}{F_{t,gc}})}$$

Where

- *t* Term from the dictionary
- · *sc* Specific corpus
- · gc Generic corpus
- *F* Frequency of a term in a corpus
- *D* Number of document that contains a term in a corpus

	SC	gc
Specific against Generic	Positive docs	Negative docs
One against All	All docs	Unrelated docs

Overview of the solution Learning a vector representation

- A Growing Hyerarchical Self Organizing Map is used to perform feature learning
 - A GHSOM is an extension of regular 2-dimensional SOMs.

Growing Hyerarchical SOM

- The purpose of a SOM is to learn a quantized representation of the training patterns in their space by adjusting the weights associated to each neuron in order to fit the distribution of the input data.
- It can be considered as a sort of topologically ordered clusterization, where each neuron may represent a cluster whose centroid is given by the vector of the incoming weights.

Growing Hyerarchical SOM

 Two parameters (τ₁, τ₂) control the propensity of the GHSOM to expand in width (for each SOM) and depth respectively.

- The idea is that when the mean quantization error of a unit is high, the training algorithm tries to lower it by
 - adding a rows or columns to a SOM (width expansion)
 - Exploding the neuron into another SOM (depth expansion)

Overview of the solution Classification of the documents

Overview of the solution Classification of the documents

- The GHSOM is used to map each input vector to a sparse vector in a different space.
 - The starting space has |D| dimension, where D is the size of the dictionary
 - The new space has K dimension, where K is the number of leaves in the GHSOM.

Sparse Vector Representation

- A leaf unit is a neuron which is not exploded into a new SOM.
- Each leaf unit is assigned a progressive index in [1, K].

 Let x be an input vector; x is mapped to a sparse vector f where

$$f(i) = \begin{cases} 1 & \text{if } x \text{ activates } u_i \\ 0 & \text{otherwise} \end{cases}$$

Overview of the solution Classification of the documents

- Finally, a regular C-SVM is trained to classify the sparse vectors in one of the two classes
 - positive
 - negative

Experiments

- Goals:
 - The contribution of the GHSOM
 - Measure the performances.

- Dataset:
 - Customer review dataset (Hu and Liu, 2004)
 - 1500+ short texts which do not exceed 30 words
 - Annotated short comments about 5 different products
 - It has been balanced

GHSOM analysis

layer 2

 We assign each leaf unit a polarity label based on majority voting on the polarity of the subset of training patterns quantized by that neuron

 $pol(u_i) = \begin{cases} pos & \text{if } |P_{pos}| > |P_{neg}| \\ neg & \text{if } |P_{neg}| > |P_{pos}| \\ pol(u_{par}) & \text{otherwise} \end{cases}$

- Evaluation: classification of the test set by assigning each document the label of the closest neuron.
 - Here the GHSOM acts like a clusterization algorithm where the neuron's weights are centroids.

GHSOM analysis

 GHSOM's optimal parameters are found by 5-fold crossvalidation.

NB:

- $\tau_1 \rightarrow$ propensity to grow in widht (bigger SOMs)
- $\tau_2 \rightarrow$ propensity to grow in depth (more SOMs and more layers)

	SVM (baseline)		GHSOM	Full model	
Encoding	linear	RBF	analysis	linear	RBF
Binary term frequency	0,52	0,56	0,75	0,81	0,87
TF-IDF unigrams	0,55	0,57	0,76	0,76	0,86
TF-IDF bigrams	0,60	0,62	0,76	0,78	0,85
SaG	0,54	0,76	0,76	0,76	0,88
OaA	0,56	0,56	0,77	0,81	0,90

- The table shows the classification results (F-measure)
 - **Baseline**: classification of BoW vectors with no feature learning
 - **GHSOM analysis** (previous slide)
 - Full model: classificaiton of the sparse vectors

	SVM (baseline)		GHSOM	Full r	Full model	
Encoding	linear	RBF	analysis	linear	RBF	
Binary term frequency	0,52	0,56	0,75	0,81	0,87	
TF-IDF unigrams	0,55	0,57	0,76	0,76	0,86	
TF-IDF bigrams	0,60	0,62	0,76	0,78	0,85	
SaG	0,54	0,76	0,76	0,76	0,88	
OaA	0,56	0,56	0,77	0,81	0,90	

SVM (baseline)		GHSOM	Full model	
linear	RBF	analysis	linear	RBF
0,52	0,56	0,75	0,81	0,87
0,55	0,57	0,76	0,76	0,86
0,60	0,62	0,76	0,78	0,85
0,54	0,76	0,76	0,76	0,88
0,56	0,56	0,77	0,81	0,90
	SVM (ba linear 0,52 0,55 0,60 0,54 0,56	SVM (baseline)linearRBF0,520,560,550,570,600,620,540,760,560,56	SVM (baseline) GHSOM linear RBF analysis 0,52 0,56 0,75 0,55 0,57 0,76 0,60 0,62 0,76 0,54 0,76 0,76 0,56 0,56 0,77	SVM (baseline) GHSOM Full r linear RBF analysis linear 0,52 0,56 0,75 0,81 0,55 0,57 0,76 0,76 0,60 0,62 0,76 0,78 0,54 0,76 0,76 0,76 0,56 0,56 0,77 0,81

	SVM (baseline)		GHSOM	Full model	
Encoding	linear	RBF	analysis	linear	RBF
Binary term frequency	0,52	0,56	0,75	0,81	0,87
TF-IDF unigrams	0,55	0,57	0,76	0,76	0,86
TF-IDF bigrams	0,60	0,62	0,76	0,78	0,85
SaG	0,54	0,76	0,76	0,76	0,88
OaA	0,56	0,56	0,77	0,81	0,90

Conclusions

- This is an experiment using a novel feature learning method.
- It proves that a *feature learning* approach outperforms standard BoW representations.
- Generally, it is my opinion that the correct way to solve a classification task is to automatically learn features rather then fixing them.
- Shift the effort from "hand craft good features" to "correctly learn good features".