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Introducing the problem

● Classification of short texts

Independent comments 

Phrases from long texts

● Predicting the sentiment polarity

Short text Classification

Positive

Negative

Neutral
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Introducing the problem

● We addressed the problem trying to learn a 
significative representation of the documents

● No prior information is used:
● No assumpions about language patterns and 

idioms
● No opinion-bearing words dictionaries

● The goal is to learn good features starting from 
several different representations of the 
documents in a VSM.
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Overview of the solution
Learning a vector representation

VSM - BoW
representation

Documents

Feature
learning

Feature
learning
model

● Unsupervised procedure
● Training a model used to obtain a sparse vector 

representation of the documents



PATHOS 2013, Darmstadt

Overview of the solution
Learning a vector representation

VSM - BoW
representation

Documents

Feature
learning

Feature
learning
model

● The documents are represented as vectors
● Standard Bag of Word approach
● A dictionary is extracted from the training corpus
● We tried five differents approaches to compute the 

scores
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Weighting functions

● Binary Term Frequency

● TF-IDF

Where:
• d is a document
• t is a term from the dictionary
• D is the set of all document
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Weighting functions
● Specific against Generic and One against All

Where

•  t Term from the dictionary
•  sc Specific corpus
•  gc Generic corpus
•  F Frequency of a term in a corpus
•  D Number of document that contains 

a term in a corpus

sc gc

Specific against Generic Positive docs Negative docs

One against All All docs Unrelated docs
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Overview of the solution
Learning a vector representation

VSM - BoW
representation

Documents

Feature
learning

Feature
learning
model

● A Growing Hyerarchical Self Organizing Map is 
used to perform feature learning

– A GHSOM is an extension of regular 2-dimensional 
SOMs.
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Growing Hyerarchical SOM

● The purpose of a SOM is to learn a 
quantized representation of the 
training patterns in their space by 
adjusting the weights associated to 
each neuron in order to fit the 
distribution of the input data.

● It can be considered as a sort of 
topologically ordered clusterization, 
where each neuron may represent a 
cluster whose centroid is given by 
the vector of the incoming weights.

Training
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Growing Hyerarchical SOM

● Two parameters (τ1, τ2) control 
the propensity of the GHSOM 
to expand in width (for each 
SOM) and depth respectively.

● The idea is that when the mean quantization error of a 
unit is high, the training algorithm tries to lower it by 

● adding a rows or columns to a SOM (width 
expansion)

● Exploding the neuron into another SOM (depth 
expansion)
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Overview of the solution
Classification of the documents

VSM - BoW
representation

Documents

Trained
GHSOM

Sparse coded
vectors

SVM
classification
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Overview of the solution
Classification of the documents

VSM - BoW
representation

Documents

Trained
GHSOM

Sparse coded
vectors

SVM
classification

● The GHSOM is used to map each input vector 
to a sparse vector in a different space.
● The starting space has |D| dimension, where D is 

the size of the dictionary
● The new space has K dimension, where K is the 

number of leaves in the GHSOM.
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Sparse Vector Representation
● A leaf unit is a neuron 

which is not exploded into 
a new SOM.

● Each leaf unit is assigned 
a progressive index in [1, 
K].
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● Let x be an input vector; x is mapped to a sparse vector 
f where

and ui is the i-th leaf unit.
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Overview of the solution
Classification of the documents

VSM - BoW
representation

Documents

Trained
GHSOM

Sparse coded
vectors

SVM
classification

● Finally, a regular C-SVM is trained to classify 
the sparse vectors in one of the two classes
● positive
● negative
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Experiments

● Goals:
● The contribution of the GHSOM
● Measure the performances.

● Dataset:
● Customer review dataset (Hu and Liu, 2004)

– 1500+ short texts which do not exceed 30 words
– Annotated short comments about 5 different products
– It has been balanced
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GHSOM analysis

● We assign each leaf unit a polarity label 
based on majority voting on the polarity 
of the subset of training patterns 
quantized by that neuron
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● Evaluation: classification of the test set by assigning 
each document the label of the closest neuron.

– Here the GHSOM acts like a clusterization algorithm 
where the neuron's weights are centroids.
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GHSOM analysis

● GHSOM's optimal 
parameters are 
found by 5-fold 
crossvalidation.

NB: 
       τ1 → propensity to grow in widht (bigger SOMs)
       τ2 → propensity to grow in depth (more SOMs and more layers)
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Results

● The table shows the classification results (F-measure)
– Baseline: classification of BoW vectors with no feature 

learning
– GHSOM analysis (previous slide)
– Full model: classificaiton of the sparse vectors

SVM (baseline) GHSOM Full model

Encoding linear RBF analysis linear RBF

Binary term frequency 0,52 0,56 0,75 0,81 0,87

TF-IDF unigrams 0,55 0,57 0,76 0,76 0,86

TF-IDF bigrams 0,60 0,62 0,76 0,78 0,85

SaG 0,54 0,76 0,76 0,76 0,88

OaA 0,56 0,56 0,77 0,81 0,90
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Conclusions

● This is an experiment using a novel feature 
learning method.

● It proves that a feature learning approach 
outperforms standard BoW representations.

● Generally, it is my opinion that the correct way 
to solve a classification task is to automatically 
learn features rather then fixing them.

● Shift the effort from “hand craft good features” 
to “correctly learn good features”.
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